We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12 (19 fibers) to 32 (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300Å at R∼2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å −1 per 2 fiber) at 23 AB mag arcsec −2 , which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 10 9 M using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.
The DEEP2 and COMBO-17 surveys are compared to study luminosity functions of red and blue galaxies to z $ 1. The two surveys have different methods and sensitivities, but nevertheless results agree. After z $ 1, M à B has dimmed by 1.2Y1.3 mag for all colors of galaxies, à for blue galaxies has hardly changed, and à for red galaxies has at least doubled (our formal value is $0.5 dex). Luminosity density j B has fallen by 0.6 dex for blue galaxies but has remained nearly constant for red galaxies. These results imply that the number and total stellar mass of blue galaxies have been substantially constant since z $ 1, whereas those of red galaxies (near L à ) have been significantly rising. To explain the new red galaxies, a ''mixed'' scenario is proposed in which star formation in blue cloud galaxies is quenched, causing them to migrate to the red sequence, where they merge further in a small number of stellar mergers. This mixed scenario matches the local boxy-disky transition for nearby ellipticals, as well as red sequence stellar population scaling laws such as the color-magnitude and Mg-relations (which are explained as fossil relics from blue progenitors). Blue galaxies enter the red sequence via different quenching modes, each of which peaks at a different characteristic mass and time. The red sequence therefore likely builds up in different ways at different times and masses, and the concept of a single process that is ''downsizing'' (or upsizing) probably does not apply. Our claim in this paper of a rise in the number of red galaxies applies to galaxies near L à . Accurate counts of brighter galaxies on the steep part of the Schechter function require more accurate photometry than is currently available.
This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library “MaStar”). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.