Background-The renin-angiotensin system (RAS) is a key player in the progression of heart failure. is thought to modulate the activity of the RAS. Furthermore, this peptide may play a part in the beneficial effects of angiotensin-converting enzyme inhibitors in cardiovascular disease. We assessed the effects of angiotensin-(1-7) on the progression of heart failure. Methods and Results-Male Sprague-Dawley rats underwent either coronary ligation or sham surgery. Two weeks after induction of myocardial infarction, intravenous infusion of angiotensin-(1-7) (24 g/kg per hour) or saline was started by minipump. After 8 weeks of treatment, hemodynamic parameters were measured, endothelial function was assessed in isolated aortic rings, and plasma angiotensin-(1-7) levels were determined. Myocardial infarction resulted in a significant deterioration of left ventricular systolic and diastolic pressure, dP/dt, and coronary flow. Raising plasma levels 40-fold, angiotensin-(1-7) infusion attenuated this impairment to a nonsignificant level, markedly illustrated by a 40% reduction in left ventricular end-diastolic pressure. Furthermore, angiotensin-(1-7) completely preserved aortic endothelial function, whereas endothelium-dependent relaxation in aortas of saline-treated infarcted rats was significantly decreased. Conclusions-Angiotensin-(1-7) preserved cardiac function, coronary perfusion, and aortic endothelial function in a rat model for heart failure.
The HIF-1alpha/VP16 hybrid transcription factor is able to promote significant improvement in perfusion of an ischemic limb. These results confirm the feasibility of a novel approach for therapeutic angiogenesis in which neovascularization may be achieved indirectly by use of a transcriptional regulatory strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.