Mimicking the comprehensive functions of human sensing via electronic skins (e-skins) is highly interesting for the development of human-machine interactions and artificial intelligences. Some e-skins with high sensitivity and stability were developed; however, little attention is paid to their comfortability, environmental friendliness, and antibacterial activity. Here, we report a breathable, biodegradable, and antibacterial e-skin based on all-nanofiber triboelectric nanogenerators, which is fabricated by sandwiching silver nanowire (Ag NW) between polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). With micro-to-nano hierarchical porous structure, the e-skin has high specific surface area for contact electrification and numerous capillary channels for thermal-moisture transfer. Through adjusting the concentration of Ag NW and the selection of PVA and PLGA, the antibacterial and biodegradable capability of e-skins can be tuned, respectively. Our e-skin can achieve real-time and self-powered monitoring of whole-body physiological signal and joint movement. This work provides a previously unexplored strategy for multifunctional e-skins with excellent practicability.
The triboelectric nanogenerator (TENG), as a promising energy harvesting technology, provides a new approach for the realization of the Internet of Things (IoTs). However, material abrasion severely limits its practical applications because of the deterioration in mechanical durability and electrical stability. Here, naturally available animal furs are introduced, owing to their superiorities of extremely low wear, high performance and humidity resistance. More than 10 times the electric output is observed relative to the conventional TENG, even at low driving torque. The transferred charge of fur‐brush TENG (FB‐TENG) exhibits only 5.6% attenuation after continuous operation for 300 000 cycles, maintaining high output performance even if the relative humidity increases up to 90%. Furthermore, a counter‐rotating structure is first designed to further increase the output by doubling the relative rotation speed. Based on this mechanism, a significantly elevated output current of 36.6% is obtained in ambient conditions. Finally, self‐powered automatic irrigation, weather monitoring and wireless water level warning multifunctional management systems are realized by collecting the wind and water flow energy. This work provides a strategy of reducing wear on the premise of high performance, which lays a foundation for effective environmental energy harvesting toward practical applications in big data and the IoTs.
Accompanying the boom in multifunctional wearable electronics, flexible, sustainable, and wearable power sources are facing great challenges. Here, a stretchable, washable, and ultrathin skin‐inspired triboelectric nanogenerator (SI‐TENG) to harvest human motion energy and act as a highly sensitive self‐powered haptic sensor is reported. With the optimized material selections and structure design, the SI‐TENG is bestowed with some merits, such as stretchability (≈800%), ultrathin (≈89 µm), and light‐weight (≈0.23 g), which conformally attach on human skin without disturbing its contact. A stretchable composite electrode, which is formed by homogenously intertwining silver nanowires (AgNWs) with thermoplastic polyurethane (TPU) nanofiber networks, is fabricated through synchronous electrospinning of TPU and electrospraying of AgNWs. Based on the triboelectrification effect, the open‐circuit voltage, short‐circuit current, and power density of the SI‐TENG with a contact area of 2 × 2 cm2 and an applied force of 8 N can reach 95 V, 0.3 µA, and 6 mW m−2, respectively. By integrating the signal‐processing circuits, the SI‐TENG with excellent energy harvesting and self‐powered sensing capability is demonstrated as a haptic sensor array to detect human actions. The SI‐TENG exhibits extensive applications in the fields of human–machine interface and security systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.