Objectives: Quercetin is one of the flavonoids with a polyhydroxyaromatic structure. Quercetin has been proposed to exhibit a bioWactivity against oxidative stress. However, quercetin has poor solubility in aqueous media. The purpose of this study was to investigate the physicochemical properties and dissolution rates of quercetin-succinic acid co-crystals. Materials and Methods:The quercetin-succinic acid co-crystals were prepared in 1:1 molar ratio using solvent evaporation. X-ray diffraction, differential thermal analysis, infrared spectroscopy, and scanning electron microscopy were performed to determine the physicochemical properties of quercetin-succinic acid co-crystals. Dissolution was studied in medium citrate buffer with 2% SLS for 60 min using USP II (paddle) apparatus at 100 rpm and 37°C. Results: Based on diffractogram, thermogram, infrared spectrum, and microscopic capture, the physicochemical properties of quercetin-succinic acid co-crystals showed difference to those of quercetin. In addition, the in vitro dissolution test showed that the dissolution profile of co-crystals was significantly higher than pure quercetin. Conclusion: This study suggests that the formation of quercetin-succinic acid co-crystals using solvent evaporation enhanced the physicochemical properties and dissolution rate of quercetin.
Primaquine (PQ) has long been recognized as the only effective drug in the treatment of hepatic stage malaria. However, severe toxicity limits its therapeutical application. Combining PQ with chloroquine (CQ) has been reported as enhancing the former’s efficacy, while simultaneously reducing its toxicity. In this study, the optimal conditions for encapsulating PQ-CQ in liposome, including incubation time, temperature and drug to lipid ratio, were identified. Furthermore, the effect of the loading combination of these two drugs on liposomal characteristics and the drug released from liposome was evaluated. Liposome is composed of HSPC, cholesterol and DSPE-mPEG2000 at a molar ratio of 55:40:5 and the drugs were loaded by means of the transmembrane pH gradient method. The particle size, ζ-potential and drug encapsulation efficiency were subsequently evaluated. The results showed that all liposome was produced with a similar particle size and ζ -potential. PQ and CQ could be optimally loaded into liposome by incubating the mixtures at 60°C for 20 minutes at a respective drug to lipid ratio of 1:3 for PQ and CQ. However, compared to single drug loading, dual-loading of PQ+CQ into liposome resulted in lower drug encapsulation and slower drug release. In conclusion, PQ and CQ can be jointly loaded into liposome with differing profiles of encapsulation and drug release.
Background and purpose: Ursolic acid (UA) exhibits anti-hepatocarcinoma and hepatoprotective activities, thus promising as an effective oral cancer therapy. However, its poor solubility and permeability lead to low oral bioavailability. In this study, we evaluated the effect of different ratios of Span ® 60-cholesterol-UA and also chitosan addition on physical characteristics and stability of niosomes to improve oral biodistribution. Experimental approach: UA niosomes (Nio-UA) were composed of Span ® 60-cholesterol-UA at different molar ratios and prepared by using thin layer hydration method, and then chitosan solution was added into the Nio-UA to prepare Nio-CS-UA. Findings/Results: The results showed that increasing the UA amount increased the particle size of Nio-UA. However, the higher the UA amount added to niosomes, the lower the encapsulation efficiency. The highest physical stability was achieved by preparing niosomes at a molar ratio of 3:2:10 for Span ® 60, cholesterol, and UA, respectively, with a zeta-potential value of -41.99 mV. The addition of chitosan increased the particle size from 255 nm to 439 nm, as well as the zeta-potential value which increased from -46 mV to -21 mV. Moreover, Nio-UA-CS had relatively higher drug release in PBS pH 6.8 and 7.4 than Nio-UA. In the in vivo study, the addition of chitosan produced higher intensities of coumarin-6-labeled Nio-UA-CS in the liver than Nio-UA. Conclusion and implications: It can be concluded that the ratio of Span ® 60-cholesterol-UA highly affected niosomes physical properties. Moreover, the addition of chitosan improved the stability and drug release as well as oral biodistribution of Nio-UA.
This study aimed to analyze the interaction of primaquine (PQ), chloroquine (CQ), and liposomes to support the design of optimal liposomal delivery for hepatic stage malaria infectious disease. The liposomes were composed of hydrogenated soybean phosphatidylcholine, cholesterol, and distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethyleneglycol]-2000), prepared by thin film method, then evaluated for physicochemical and spectrospic characteristics. The calcein release was further evaluated to determine the effect of drug co-loading on liposomal membrane integrity. The results showed that loading PQ and CQ into liposomes produced changes in the infrared spectra of the diester phosphate and carbonyl ester located in the polar part of the phospholipid, in addition to the alkyl group (CH2) in the nonpolar portion. Moreover, the thermogram revealed the loss of the endothermic peak of liposomes dually loaded with PQ and CQ at 186.6 °C, which is identical to that of the phospholipid. However, no crystallinity changes were detected through powder X-ray diffraction analysis. Moreover, PQ, with either single or dual loading, produced the higher calcein release profiles from the liposomes than that of CQ. The dual loading of PQ and CQ tends to interact with the polar head group of the phosphatidylcholine bilayer membrane resulted in an increase in water permeability of the liposomes.
Backgrounds. Curcumin (CUR) is a low-molecular-weight polyphenolic substance obtained from the tuber part of Curcuma species. Anti-inflammatory and anti-hepatitis C virus (HCV) activities have been associated with CUR. However, its poor aqueous solubility and low systemic bioavailability have been the challenges in improving the therapeutic efficacy of curcumin. Aim. The study aimed to produce CUR-loaded liposomal solid gels as anti-HCV delivery systems. Parameters including the physical characteristics and the cell cytotoxicity properties were evaluated. Methods. The freeze-drying technique was applied to manufacture the CUR-loaded liposomal solid gels. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and differential thermal analysis (DTA) were involved to reveal the characteristics of the solid gels. Such characteristics were as follows: the morphology and the microscopic structure of the solid gels, the crystallinity structure of the curcumin, and the thermal properties of the mixtures. Furthermore, their cell cytotoxicity was investigated using a Huh7it cell line. Results. The SEM images confirmed that curcumin liposomes were intact and trapped in the solid gel matrix. The XRD data showed flat patterns diffractograms of the formulations, confirming the transformation of CUR from crystalline to amorphous form. The DTA thermograms showed a single melting endothermic peak at a higher temperature around 200°C, indicating a single-phase transition of the mixtures. The XRD and DTA data revealed the molecular dispersion of CUR in the developed formulations. The cytotoxicity data provided as cell cytotoxicity 50 (CC50) for all formulations were ≥25 mg. These data confirmed that the developed liposomal solid gels were not cytotoxic to Huh7it cell line, indicating that the anti-HCV activity would be through a specific pathway and not by its toxicity. Conclusion. The CUR-loaded liposomal solid gels exhibited the potential and offered an alternative dosage form to improve the therapeutic efficacy of curcumin as an anti-HCV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.