One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.
Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as ‘anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov–Bohm like phenomena at optical frequencies.
High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.