In multicellular organisms, circadian oscillators are organized into multitissue systems which function as biological clocks that regulate the activities of the organism in relation to environmental cycles and provide an internal temporal framework. To investigate the organization of a mammalian circadian system, we constructed a transgenic rat line in which luciferase is rhythmically expressed under the control of the mouse Per1 promoter. Light emission from cultured suprachiasmatic nuclei (SCN) of these rats was invariably and robustly rhythmic and persisted for up to 32 days in vitro. Liver, lung, and skeletal muscle also expressed circadian rhythms, which damped after two to seven cycles in vitro. In response to advances and delays of the environmental light cycle, the circadian rhythm of light emission from the SCN shifted more rapidly than did the rhythm of locomotor behavior or the rhythms in peripheral tissues. We hypothesize that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery to maintain adaptive phase control, which is temporarily lost following large, abrupt shifts in the environmental light cycle.
The objective of this study was to establish pure blood-nerve barrier (BNB)-derived peripheral nerve pericyte cell lines and to investigate their unique properties as barrier-forming cells. We isolated peripheral nerve, brain, and lung pericytes from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines expressed several pericyte markers such as alpha-smooth muscle actin, NG2, osteopontin, and desmin, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, these cell lines expressed several tight junction molecules such as occludin, claudin-12, ZO-1, and ZO-2. In particular, the expression of occludin was detected in peripheral nerve and brain pericytes, although it was not detected in lung pericytes by a Western blot analysis. An immunocytochemical analysis confirmed that occludin and ZO-1 were localized at the cell-cell boundaries among the pericytes. Brain and peripheral nerve pericytes also showed significantly higher trans-pericyte electrical resistance values and lower inulin clearances than lung pericytes. We considered that occludin localized at the cell-cell boundaries among the pericytes might mechanically stabilize the microvessels of the BNB and the blood-brain barrier. Furthermore, we also showed that these cell lines expressed many barrier-related transporters. ABCG2, p-gp, MRP-1, and Glut-1 were detected by a Western blot analysis and were observed in the cytoplasm and outer membrane by an immunocytochemical analysis. These transporters on pericytes might facilitate the peripheral nerve-to-blood efflux and blood-to-peripheral nerve influx transport of substrates in cooperation with those on endothelial cells in order to maintain peripheral nerve homeostasis.
The low efficiency of transgenic animal production by microinjection has been a serious problem especially for the production of transgenic livestock. We developed a method to selectively produce transgenic mice using green fluorescent protein (GFP) as a marker. Using this method, we obtained eight fetuses and four live-born mice derived from 55 GFP-positive blastocysts. PCR analysis showed 11 out of 12 mice (fetuses and newborn mice) were transgenic. Southern blot analysis showed that 8 out of 12 were transgenic. GFP expression was also observed in bovine blastocysts, suggesting that this method should contribute to the efficient production of transgenic livestock.
ABSTRACT. In autoimmune disorders of the peripheral nervous system (PNS) such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, breakdown of the blood-nerve barrier (BNB) has been considered as a key step in the disease process. Hence, it is important to know the cellular property of peripheral nerve microvascular endothelial cells (PnMECs) constituting the bulk of BNB. Although many in vitro models of the blood-brain barrier (BBB) have been established, very few in vitro BNB models have been reported so far. We isolated PnMECs from transgenic rats harboring the temperature-sensitive SV40 large T-antigen gene (tsA58 rat) and investigated the properties of these "barrier-forming cells". Isolated PnMECs (TR-BNBs) showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Furthermore, we confirmed the in vivo expression of various BBB-forming endothelial cell markers in the endoneurium of a rat sciatic nerve. These results suggest that PnMECs constituting the bulk of BNB have a highly specialized characteristic resembling the endothelial cells forming BBB.
Three mammalian Period (Per) genes, termed Per1, Per2, and Per3, have been identified as structural homologues of the Drosophila circadian clock gene, period (per). The three Per genes are rhythmically expressed in the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. The phases of peak mRNA levels for the three Per genes in the SCN are slightly different. Light sequentially induces the transcripts of Per1 and Per2 but not of Per3 in mice. These data and others suggest that each Per gene has a different but partially redundant function in mammals. To elucidate the function of Per1 in the circadian system in vivo, we generated two transgenic rat lines in which the mouse Per1 (mPer1) transcript was constitutively expressed under the control of either the human elongation factor-1␣ (EF-1␣) or the rat neuronspecific enolase (NSE) promoter. The transgenic rats exhibited an Ϸ0.6 -1.0-h longer circadian period than their wild-type siblings in both activity and body temperature rhythms. Entrainment in response to light cycles was dramatically impaired in the transgenic rats. Molecular analysis revealed that the amplitudes of oscillation in the rat Per1 (rPer1) and rat Per2 (rPer2) mRNAs were significantly attenuated in the SCN and eyes of the transgenic rats. These results indicate that either the level of Per1, which is raised by overexpression, or its rhythmic expression, which is damped or abolished in over expressing animals, is critical for normal entrainment of behavior and molecular oscillation of other clock genes.transgenic rats ͉ entrainment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.