Aims: The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinociception. Results: The MOR C terminus carries the histidine triad nucleotide-binding protein 1 (HINT1) coupled to the regulator of G-protein signaling RGSZ2-neural nitric oxide synthase assembly. Activated MORs stimulate the production of nitric oxide (NO), and the redox zinc switch RGSZ2 converts this signal into free zinc ions that are required to recruit the redox sensor PKCγ to HINT1 proteins. Then, PKCγ impairs HINT1-RGSZ2 association and enables σ1R-NR1 interaction with MOR-HINT1 complexes to restrain opioid signaling. The inhibition of NOS or the absence of σ1Rs prevents HINT1-PKCγ interaction, and MOR-NMDAR cross-regulation fails. The σ1R antagonists transitorily remove the binding of σ1Rs to NR1 subunits, facilitate the entrance of negative regulators of NMDARs, likely Ca2+-CaM, and prevent NR1 interaction with HINT1, thereby impairing the negative feedback of glutamate on opioid analgesia. Innovation: A redox-regulated process situates MOR signaling under NMDAR control, and in this context, the σ1R binds to the cytosolic C terminal region of the NMDAR NR1 subunit. Conclusion: The σ1R antagonists enhance opioid analgesia in naïve mice by releasing MORs from the negative influence of NMDARs, and they also reset antinociception in morphine tolerant animals. Moreover, σ1R antagonists alleviate neuropathic pain, probably by driving the inhibition of up-regulated NMDARs. Antioxid. Redox Signal. 22, 799–818.
Methamphetamine is a widely abused illicit drug. Recent epidemiological studies showed that methamphetamine increases the risk for developing Parkinson's disease (PD) in agreement with animal studies showing dopaminergic neurotoxicity. We examined the effect of repeated low and medium doses vs single high dose of methamphetamine on degeneration of dopaminergic terminals and cell bodies. Mice were given methamphetamine in one of the following paradigms: three injections of 5 or 10 mg/kg at 3 h intervals or a single 30 mg/kg injection. The integrity of dopaminergic fibers and cell bodies was assessed at different time points after methamphetamine by tyrosine hydroxylase immunohistochemistry and silver staining. The 3 Â 10 protocol yielded the highest loss of striatal dopaminergic terminals, followed by the 3 Â 5 and 1 Â 30. Some degenerating axons could be followed from the striatum to the substantia nigra pars compacta (SNpc). All protocols induced similar significant degeneration of dopaminergic neurons in the SNpc, evidenced by aminocupric-silver-stained dopaminergic neurons. These neurons died by necrosis and apoptosis. Methamphetamine also killed striatal neurons. By using D1-Tmt/D2-GFP BAC transgenic mice, we observed that degenerating striatal neurons were equally distributed between direct and indirect medium spiny neurons. Despite the reduced number of dopaminergic neurons in the SNpc at 30 days after treatment, there was a partial time-dependent recovery of dopamine terminals beginning 3 days after treatment. Locomotor activity and motor coordination were robustly decreased 1-3 days after treatment, but recovered at later times along with dopaminergic terminals. These data provide direct evidence that methamphetamine causes long-lasting loss/degeneration of dopaminergic cell bodies in the SNpc, along with destruction of dopaminergic terminals in the striatum.
The distribution of the immunoreactivity to nitric oxide synthase has been examined from rostral to caudal areas of the rat central nervous system using light microscopy. Endogenous nitric oxide synthase was located using a specific polyclonal antiserum, produced against affinity purified nitric oxide synthase from whole rat brain, following the avidin-biotin peroxidase procedure. Immunoreactive cell bodies and processes showed a widespread distribution in the brain. In the telencephalon, immunoreactive structures were distributed in all areas of the cerebral cortex, the ventral endopiriform nucleus and claustrum, the main and accessory olfactory bulb, the anterior and posterior olfactory nuclei, the precommisural hippocampus, the taenia tecta, the nucleus accumbens, the stria terminalis, the caudate putamen, the olfactory tubercle and islands of Calleja, septum, globus pallidus and substantia innominata, hippocampus and amygdala. In the diencephalon, the immunoreactivity was largely found in both the hypothalamus and thalamus. In the hypothalamus, immunoreactive cell bodies were characteristically located in the perivascular-neurosecretory systems and mamillary bodies. In addition, immunoreactive nerve fibres were detected in the median eminence of the infundibular stem. The mesencephalon showed nitric oxide synthase immunoreactivity in the ventral tegmental area, the interpeduncular nucleus, the rostral linear nucleus of the raphe and the dorsal raphe nucleus. Immunoreactive structures were also found in the nuclei of the central grey, the peripeduncular nucleus and substantia nigra pars lateralis, the geniculate nucleus and in the superior and inferior colliculi. The pons displayed immunoreactive structures principally in the pedunculopontine and laterodorsal tegmental nuclei, the ventral tegmental nucleus, the reticulotegmental pontine nucleus, the parabrachial nucleus and locus coeruleus. In the medulla oblongata, immunoreactive neurons and processes were detected in the principal sensory trigeminal nucleus, the trapezoid body, the raphe magnus, the pontine reticular nuclei, the supragenual nucleus, the prepositus hypoglossal nucleus, the medial and spinal vestibular nuclei, the dorsal cochlear nucleus, the medullary reticular field, the nucleus of the solitary tract, the gracile and cuneate nuclei, the dorsal nucleus of the vagus nerve and the oral, interpolar and caudal parts of the spinal trigeminal nucleus. In the cerebellum, the stellate and basket cells showed immunoreactivity, which was also seen in the basket terminal fibres of the Purkinje cell layer. Isolated immunoreactive Purkinje cells were found in the vermis and parafloccular regions of the cerebellum. In the granular layer of the cerebellum, the granular cells and glomeruli were also immunoreactive. Numerous positive varicose nerve fibres and occasional neurons were also found in the lateral and interposed cerebellar nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.