Following a request from the European Commission, EFSA developed an updated scientific guidance to assist applicants in the preparation of applications for food enzymes. This guidance describes the scientific data to be included in applications for the authorisation of food enzymes, as well as for the extension of use for existing authorisations, in accordance with Regulation ( EC ) No 1331/2008 and its implementing rules. Information to be provided in applications relates to source, production and characteristics of the food enzyme, toxicological data, allergenicity and dietary exposure estimation. Source, production and characteristics of the food enzyme are first considered only for enzymes of microbial origin and subsequently for those enzymes derived from plants and for enzymes from animal sources. Finally, the data requested for toxicology, allergenicity and dietary exposure applies to all food enzymes independent of the source. On the basis of the submitted data, EFSA will assess the safety of food enzymes and conclude whether or not they present a risk to human health under the proposed conditions of use.
Technical data for exposure assessment of food enzymes Dietary exposure is part of the overall assessment of food enzymes. In order to develop food process‐based exposure models, a number of different input data are required in tandem with technical conversion factors. This allows for a combination of use levels with food consumption data, which are typically reported as consumed. The use levels are expressed as total organic solids/kg raw materials. For each food process, EFSA identified a list of food groups and collated technical conversion factors. To ensure uniform application of FoodEx food categories and technical conversion factors in the assessment of food enzyme dossiers, stakeholders were consulted via open calls‐for‐data. Feedback was analysed. This document reports the consolidated input parameters for each food process. Regular updates have been made on a yearly basis since 2018, as further process‐specific parameters were generated. The consolidated input data have been used to calculate dietary exposure during the evaluation of food enzyme applications. As well as publishing the input parameters, process‐specific calculators of the food enzyme intake models (FEIM) have also been developed on the basis of summary statistics. These calculators have been deposited at https://zenodo.org/ for open access.
Food enzymes are used for technical purposes in the production of food ingredients or foods‐as‐consumed. In the European Union, the safety of a food enzyme is evaluated by EFSA on the basis of a technical dossier provided by an applicant. Dietary exposure is an integral part of the risk assessment of food enzymes. To develop exposure models specific to each food manufacturing process in which food enzymes are used, different input data are required which are then used in tandem with technical conversion factors. This allows the use levels of food enzyme to be related to food consumption data collected in dietary surveys. For each food manufacturing process, EFSA identified a list of food groups (FoodEx1 classification system) and collated technical conversion factors. To ensure a correct and uniform application of these input data in the assessment of food enzyme dossiers, stakeholders were consulted via open calls‐for‐data. In addition to publishing and updating the identified input parameters on an annual basis, single‐process‐specific calculators of the Food Enzyme Intake Models (FEIMs) have been developed. These calculators have been deposited at https://zenodo.org/ since 2018 for open access. By 2023, EFSA had compiled the input data for a total of 40 food manufacturing processes in which food enzymes are employed. In this document, the food manufacturing processes are structured, food groups classified initially in the FoodEx1 system are translated into the FoodEx2 system, and technical factors are adjusted to reflect the more detailed and standardised FoodEx2 nomenclature. The development of an integrated FEIM‐web tool using this collection of input data is carried out for a possible release in 2024. This tool will be able to estimate the exposure to the food enzyme–total organic solids (TOS) when employed in multiple food manufacturing processes.
The EFSA Scientific Committee addressed in this document the peculiarities related to the genotoxicity assessment of chemical mixtures. The EFSA Scientific Committee suggests that first a mixture should be chemically characterised as far as possible. Although the characterisation of mixtures is relevant also for other toxicity aspects, it is particularly significant for the assessment of genotoxicity. If a mixture contains one or more chemical substances that are individually assessed to be genotoxic in vivo via a relevant route of administration, the mixture raises concern for genotoxicity. If a fully chemically defined mixture does not contain genotoxic chemical substances, the mixture is of no concern with respect to genotoxicity. If a mixture contains a fraction of chemical substances that have not been chemically identified, experimental testing of the unidentified fraction should be considered as the first option or, if this is not feasible, testing of the whole mixture should be undertaken. If testing of these fraction(s) or of the whole mixture in an adequately performed set of in vitro assays provides clearly negative results, the mixture does not raise concern for genotoxicity. If in vitro testing provides one or more positive results, an in vivo follow‐up study should be considered. For negative results in the in vivo follow‐up test(s), the possible limitations of in vivo testing should be weighed in an uncertainty analysis before reaching a conclusion of no concern with respect to genotoxicity. For positive results in the in vivo follow‐up test(s), it can be concluded that the mixture does raise a concern about genotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.