The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.
The trend of volume reflection parameters (deflection angle and efficiency) in a bent (110) silicon crystal has been investigated as a function of the crystal curvature with 400 GeV/c protons on the H8 beam line at the CERN Super Proton Synchrotron. This Letter describes the analysis performed at six different curvatures showing that the optimal radius for volume reflection is approximately 10 times greater than the critical radius for channeling. A strong scattering of the beam by the planar potential is also observed for a bend radius close to the critical one.
Deflection due to planar channeling and volume reflection in short bent silicon crystals was observed for the first time for 150 GeV/c negative particles, pi(-) mesons, at one of the secondary beams of the CERN SPS. The deflection efficiency was about 30% for channeling and higher than 80% for volume reflection. Volume reflection occurs, in spite of the attractive character of the forces acting between the particles and the crystal planes, in a wide angular range of the crystal orientations determined by the crystal bend angle
Channeling in a short bent silicon crystal was investigated at the CERN SPS using 400-GeV/c protons with an angular spread much narrower than the critical channeling angle. Particle dechanneling due to multiple scattering on the atomic nuclei of the crystal was observed and its dechanneling length was measured to be about 1.5 mm. For a crystal with length comparable to such dechanneling length, an efficiency of 83.4% was recorded, which is close to the maximum value expected for a parallel beam and exceeds the previously known limitation of deflection efficiency for long crystal
The radiation emitted by 180-GeV/ c volume-reflected electrons and positrons impinging on a bent crystal has been measured by the H8RD22 Collaboration on the H8 beamline at the CERN SPS. A dedicated spectrometer has been developed to measure high-energy photon spectra ͑up to ϳ100 GeV͒ under volume reflection: photon and charged particle beams have been separated by a bending magnet and leptons were detected and tagged by microstrip silicon detectors and a Pb-scintillator sampling calorimeter. A comparison between the experimental and analytical data for the amorphous and volume-reflection cases is presented and the differences are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.