Objectives: To compare detection patterns of 80 cephalometric landmarks identified by an automated identification system (AI) based on a recently proposed deep-learning method, the You-Only-Look-Once version 3 (YOLOv3), with those identified by human examiners. Materials and Methods: The YOLOv3 algorithm was implemented with custom modifications and trained on 1028 cephalograms. A total of 80 landmarks comprising two vertical reference points and 46 hard tissue and 32 soft tissue landmarks were identified. On the 283 test images, the same 80 landmarks were identified by AI and human examiners twice. Statistical analyses were conducted to detect whether any significant differences between AI and human examiners existed. Influence of image factors on those differences was also investigated. Results: Upon repeated trials, AI always detected identical positions on each landmark, while the human intraexaminer variability of repeated manual detections demonstrated a detection error of 0.97 ± 1.03 mm. The mean detection error between AI and human was 1.46 ± 2.97 mm. The mean difference between human examiners was 1.50 ± 1.48 mm. In general, comparisons in the detection errors between AI and human examiners were less than 0.9 mm, which did not seem to be clinically significant. Conclusions: AI showed as accurate an identification of cephalometric landmarks as did human examiners. AI might be a viable option for repeatedly identifying multiple cephalometric landmarks.
Objective: To compare the accuracy and computational efficiency of two of the latest deep-learning algorithms for automatic identification of cephalometric landmarks. Materials and Methods: A total of 1028 cephalometric radiographic images were selected as learning data that trained You-Only-Look-Once version 3 (YOLOv3) and Single Shot Multibox Detector (SSD) methods. The number of target labeling was 80 landmarks. After the deep-learning process, the algorithms were tested using a new test data set composed of 283 images. Accuracy was determined by measuring the point-to-point error and success detection rate and was visualized by drawing scattergrams. The computational time of both algorithms was also recorded. Results: The YOLOv3 algorithm outperformed SSD in accuracy for 38 of 80 landmarks. The other 42 of 80 landmarks did not show a statistically significant difference between YOLOv3 and SSD. Error plots of YOLOv3 showed not only a smaller error range but also a more isotropic tendency. The mean computational time spent per image was 0.05 seconds and 2.89 seconds for YOLOv3 and SSD, respectively. YOLOv3 showed approximately 5% higher accuracy compared with the top benchmarks in the literature. Conclusions: Between the two latest deep-learning methods applied, YOLOv3 seemed to be more promising as a fully automated cephalometric landmark identification system for use in clinical practice.
An interaction between the B2 subunit of vacuolar H + -ATPase (V-ATPase) and microfilaments is required for osteoclast bone resorption. An atomic homology model of the actin binding site on B2 was generated and molecular docking simulations were performed. Enoxacin, a fluoroquinolone antibiotic, was identified and in vitro testing demonstrated that enoxacin blocked binding between purified B2 and microfilaments. Enoxacin dose dependently reduced the number of osteoclasts differentiating in mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D 3 , as well as markers of osteoclast activity, and the number of resorption lacunae formed on bone slices. Enoxacin inhibited osteoclast formation at concentrations where osteoblast formation was not altered. In summary, enoxacin is a novel small molecule inhibitor of osteoclast bone resorption that acts by an unique mechanism and is therefore an attractive lead molecule for the development of a new class of antiosteoclastic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.