Axions in the µeV mass range are a plausible cold dark matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. The first result from such an axion search using a superconducting first-stage amplifier (SQUID) is reported. The SQUID amplifier, replacing a conventional GaAs field-effect transistor amplifier, successfully reached axion-photon coupling sensitivity in the band set by present axion models and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.
This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses. DOI: 10.1103/PhysRevLett.120.151301 Axions are particles predicted to exist as a consequence of the Peccei-Quinn solution to the strong-CP problem [1][2][3] and could account for all of the dark matter in our Universe [4][5][6]. While there exist a number of mechanisms to produce axions in the early Universe [4,[7][8][9] that allow for a wide range of dark matter axion masses, current numerical and analytical studies of QCD typically suggest a preferred mass range of 1-100 μeV for axions produced after cosmic inflation in numbers that saturate the Lambda-CDM (cold dark matter) density [10][11][12][13][14]. The predicted coupling between axions and photons is model dependent; in general, axions with dominant hadronic couplings as in the Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [15,16] are predicted to have an axion-photon coupling roughly 2.7 times larger than that of the Dine-FischlerSrednicki-Zhitnitsky (DFSZ) model [17,18]. Because the axion-photon coupling is expected to be very small, Oð10 −17 -10 −12 GeV −1 Þ over the expected axion mass range, these predicted particles are dubbed invisible axions [4].The most promising technique to search for dark matter axions in the favored mass range is the axion haloscope [19] consisting of a cold microwave resonator immersed in a strong static magnetic field. In the presence of this magnetic field, the ambient dark matter axion field produces a volume-filling current density oscillating at frequency f ¼ E=h, where E is the total energy consisting mostly of the axion rest mass with a small kinetic energy addition. When the resonator is tuned to match this frequency, the current source delivers power to the resonator in the form of microwave photons which can be detected with a low-noise microwave receiver. To date, a number of axion haloscopes have been implemented. All had noise levels too high to detect the QCD axion signal [20][21][22][23][24][25][26][27][28][29][30] in an experimentally realizable time. Previous versions of the Axion Dark Matter eXperiment (ADMX) [24][25][26][27][28][29] achieved sensitivity to the stronger KSVZ couplings in the ð1.91-3.69Þ-μeV mass range. ADMX has since been improved to utilize a dilution refrigerator to obtain a significantly lower system noise temperature, drastically increasing its sensitivity. We present here results from the first axion experiment to have sensitivity to the more weakly coupled DFSZ axion ...
We present new constraints on the 21cm Epoch of Reionization (EoR) power spectrum derived from 3 months of observing with a 32-antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over 8 orders of magnitude of foreground suppression (in mK 2 ). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41mK) 2 for k = 0.27 h Mpc −1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the HI has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or mini-quasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=6-12), and to explore earlier epochs of our Cosmic Dawn (z∼30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.