We have successfully used mutagenesis to engineer Taxol (paclitaxel) binding activity in Saccharomyces cerevisiae tubulin. Taxol, a successful antitumor agent, acts by promoting tubulin assembly and stabilizing microtubules. Several structurally diverse antimitotic compounds, including the epothilones, compete with Taxol for binding to mammalian microtubules, suggesting that Taxol and these compounds share an overlapping binding site. However, Taxol has no effect on tubulin or microtubules from S. cerevisiae, whereas epothilone does. After considering data on Taxol binding to mammalian tubulin and recent modeling studies, we have hypothesized that differences in five key amino acids are responsible for the lack of Taxol binding to yeast tubulin. After changing these amino acids to those found in mammalian brain tubulin, we observed Taxol-related activity in yeast tubulin comparable to that in mammalian tubulin. Importantly, this experimental system can be used to reveal tubulin interactions with Taxol, the epothilones, and other Taxol-like compounds.
The synthesis and evaluation of some 2'- and 7-amino acid derivatives of taxol (1) are reported. Reaction of taxol with N-protected amino acids gave 2'-N-protected amino acid esters of taxol. However, deprotection of the amino group and subsequent isolation of products were complex and only successful when formic acid was used to deprotect a t-BOC protecting group. Esterification of taxol using N,N-dialkylated amino acids gave 2'-amino acid esters of taxol, 2'-(N,N-dimethylglycyl)taxol (4) and 2'-[3-(N,N-diethylamino)propionyl]taxol as its methanesulfonic acid salt (5b), in good yield. The 7-derivatives, 7-(N,N-dimethylglycyl)taxol (9) and 7-L-alanyltaxol (12), were prepared by two alternate methods. In the first approach, the 2'-hydroxyl group was protected using the [(2,2,2-trichloro-ethyl)oxy]carbonyl, or troc, protecting group followed by the esterification of the 7-hydroxyl and subsequent deprotection of the amino and troc groups. In the second approach, taxol was allowed to react with more than 2 molar equiv of the N-protected amino acids or N,N-dialkylated amino acids to give 2',7-diamino acid esters of taxol. For the protected amino acids, the deprotection of the amino group followed by removal of the 2'-substituent gave the 7-amino acid esters of taxol. The methanesulfonic acid salts of both 2'- and 7-amino acid esters showed improved solubility ranging from 2 to greater than 10 mg/mL. The 7-derivatives were effective in promoting microtubule assembly in vitro while 2'-derivatives showed little in vitro activity. The derivatives 2'-(N,N-dimethylglycyl)taxol (4) and 2'-[3-(N,N-diethylamino)propionyl]taxol (5) inhibited proliferation of B16 melanoma cells to an extent similar to that of taxol, while the other derivatives were about 50% as cytotoxic. In a mammary tumor screen, 2'-[3-(N,N-diethylamino)propionyl]taxol showed the greatest antitumor activity compared to the other analogues. The lower activities of the 7-derivatives in inhibiting tumor growth and melanoma cell proliferation (although they were almost as active as taxol in inducing microtubule assembly in vitro) may be due to differences in drug uptake by the cells. The similar cytotoxic and antitumor activities of the 2'-analogues and taxol can be explained by their conversion to taxol or an active taxol metabolite. Therefore, the 2'-analogues appear to behave as prodrugs and have the potential to be developed as chemotherapeutic agents.
The yeast Saccharomyces cerevisiae has two genes for α-tubulin, TUB1 and TUB3, and one β-tubulin gene, TUB2. The gene product of TUB3, Tub3, represents ~10% of α-tubulin in the cell. We determined the effects of the two α-tubulin isotypes on microtubule dynamics in vitro. Tubulin was purified from wild-type and deletion strains lacking either Tub1 or Tub3, and parameters of microtubule dynamics were examined. Microtubules containing Tub3 as the only α-tubulin isotype were less dynamic than wild-type microtubules, as shown by a shrinkage rate and catastrophe frequency that were about one-third of that for wild-type microtubules. Conversely, microtubules containing Tub1 as the only α-tubulin isotype were more dynamic than wild-type microtubules, as shown by a shrinkage rate that was 50% higher and a catastrophe frequency that was 30% higher than those of wild-type microtubules. The results suggest that a role of Tub3 in budding yeast is to control microtubule dynamics.
Deuterium oxide (D(2)O) is known to promote the assembly of tubulin into microtubules in vitro, to increase the volume of mitotic spindles and the number and length of spindle microtubules, and to inhibit mitosis. Reasoning that its actions on cellular microtubules could be due to modulation of microtubule dynamics, we examined the effects of replacing H(2)O with D(2)O on microtubule dynamic instability, treadmilling, and steady-state GTPase activity. We found that replacing 50% or more of the H(2)O with D(2)O promoted microtubule polymerization and stabilized microtubules against dilution-induced disassembly. Using steady-state axoneme-seeded microtubules composed of pure tubulin and video microscopy, we found that 84% D(2)O decreased the catastrophe frequency by 89%, the shortening rate by 80%, the growing rate by 50%, and the dynamicity by 93%. Sixty percent D(2)O decreased the treadmilling rate of microtubules composed of tubulin and microtubule-associated proteins by 42%, and 89% D(2)O decreased the steady-state GTP hydrolysis rate by 90%. The mechanism responsible for the ability of D(2)O to stabilize microtubule dynamics may involve enhancement of hydrophobic interactions in the microtubule lattice and/or the substitution of deuterium bonds for hydrogen bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.