Mechanistic disease stratification will be crucial to develop a precision medicine approach for future disease modifying therapy in sporadic Parkinson's disease (sPD). Mitochondrial and lysosomal dysfunction are key mechanisms in the pathogenesis of sPD and therefore promising targets for therapeutic intervention. We investigated mitochondrial and lysosomal function in skin fibroblasts of 100 sPD patients and 50 age-matched controls. A combination of cellular assays, RNA-seq based pathway analysis and genotyping was applied. Distinct subgroups with mitochondrial (mito-sPD) or lysosomal (lyso-sPD) dysfunction were identified. Mitochondrial dysfunction correlated with reduction in complex I and IV protein levels. RNA-seq based pathway analysis revealed marked activation of the lysosomal pathway with enrichment for lysosomal disease gene variants in lyso-sPD. Conversion of fibroblasts to induced neuronal progenitor cells and subsequent differentiation into tyrosine hydroxylase positive neurons confirmed and further enhanced both mitochondrial and lysosomal abnormalities. Treatment with ursodeoxycholic acid improved mitochondrial membrane potential and intracellular ATP levels even in sPD patient fibroblast lines with comparatively mild mitochondrial dysfunction. The results of our study suggest that in-depth phenotyping and focussed assessment of putative neuroprotective compounds in peripheral tissue are a promising approach towards disease stratification and precision medicine in sPD.
IntroductionThere are no disease-modifying treatments for Parkinson’s disease (PD). We undertook the first drug screen in PD patient tissue and idntified ursodeoxycholic acid (UDCA) as a promising mitochondrial rescue agent. The aims of this trial are to determine safety and tolerability of UDCA in PD at 30 mg/kg, confirm the target engagement of UDCA, apply a novel motion sensor-based approach to quantify disease progression objectively, and estimate the mean effect size and its variance on the change in motor severity.Methods and analysisThis is a phase II, two-centre, double-blind, randomised, placebo-controlled trial of UDCA at a dose of 30 mg/kg in 30 participants with early PD. Treatment duration is 48 weeks, followed by an 8-week washout phase. Randomisation is 2:1, drug to placebo. Assessments are performed at baseline, week 12, 24, 36, 48 and 56. The primary outcome is safety and tolerability. Secondary outcomes will compare the change between baseline and week 48 using the following three approaches: the Movement Disorders Society Unified Parkinson’s Disease Rating Scale Part 3 in the practically defined ‘OFF’ medication state; confirmation of target engagement, applying 31Phosphorus MR Spectroscopy to assess the levels of ATP and relevant metabolites in the brain; and objective quantification of motor impairment, using a validated, motion sensor-based approach. The primary outcome will be reported using descriptive statistics and comparisons between treatment groups. For each secondary outcome, the change from baseline will be summarised within treatment groups using summary statistics and appropriate statistical tests assessing for significant differences. All outcomes will use an intention-to-treat analysis population.Ethics and disseminationThis trial has been approved by the East of England – Cambridgeshire and Hertfordshire Research Ethics committee. Results will be disseminated in peer-reviewed journals, presentations at scientific meetings and to patients in a lay-summary format.Trial registration numberNCT03840005.
Abstract-Optical coherence tomography (OCT) exploits the coherent properties of light to permit noninvasive and in situ imaging of biological tissues. By expanding the range of OCT light sources from the traditional telecoms wavelengths to include ∼400 nm gallium nitride (GaN) based superluminescent light emitting diodes (SLEDs) subcellular axial and lateral resolution could be achieved, provided enhanced bandwidth is also achieved. Due to the focus on high-power applications for GaN SLEDs, there has been limited work on increasing the source bandwidth. In this paper, we demonstrate for the first time a ∼400 nm GaN SLED with >10 nm bandwidth employed within an OCT system, where an axial resolution of ∼7 µm is achieved. Bespoke GaN SLEDs suggest that <4 µm axial resolution imaging is imminent for short wavelength devices.Index Terms-Axial resolution, broad bandwidth, gallium nitride superluminescent light emitting diodes, optical coherence tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.