Influenza viruses typically cause the most severe disease in children and elderly individuals. However, H1N1 viruses disproportionately affected middle-aged adults during the 2013-2014 influenza season. Although H1N1 viruses recently acquired several mutations in the hemagglutinin (HA) glycoprotein, classic serological tests used by surveillance laboratories indicate that these mutations do not change antigenic properties of the virus. Here, we show that one of these mutations is located in a region of HA targeted by antibodies elicited in many middle-aged adults. We find that over 42% of individuals born between 1965 and 1979 possess antibodies that recognize this region of HA. Our findings offer a possible antigenic explanation of why middle-aged adults were highly susceptible to H1N1 viruses during the 2013-2014 influenza season. Our data further suggest that a drifted H1N1 strain should be included in future influenza vaccines to potentially reduce morbidity and mortality in this age group. influenza | antigenic drift | hemagglutinin | antibody | vaccine
Human respiratory syncytial virus (RSV) is a major cause of severe respiratory illness in children and susceptible adults. RSV blocks the development of the innate antiviral immune response and can grow to high titers in the respiratory tract. Here we demonstrate that immunostimulatory defective viral genomes (iDVGs) that are naturally generated during RSV replication are strong inducers of the innate antiviral response to RSV in mice and humans. In mice, RSV iDVGs stimulated the expression of antiviral genes, restricted viral replication, and prevented weight loss and lung inflammation. In human cells, the antiviral response to RSV iDVGs was dominated by the expression of IFN-λ1 over IFN-β and was driven by rapid intranuclear accumulation of the transcription factor IRF1. RSV iDVGs were detected in respiratory secretions of hospitalized patients, and their amount positively correlated with the level of expression of antiviral genes in the samples. Infection of explanted human lung tissue from different donors revealed that most humans can respond to RSV iDVGs and that the rate of accumulation of iDVGs during infection directly correlates with the quality of the antiviral response. Taken together, our data establish iDVGs as primary triggers of robust antiviral responses to RSV and provide the first evidence for an important biological role for naturally occurring iDVGs during a paramyxovirus infection in humans.
Purpose: This phase 1 dose escalation study evaluated the safety and feasibility of single-dose intrapleural IFN-β gene transfer using an adenoviral vector (Ad.IFN-β) in patients with malignant pleural mesothelioma (MPM) and metastatic pleural effusions (MPE). Experimental Design: Ad.IFN-β was administered through an indwelling pleural catheter in doses ranging from 9 × 1011 to 3 × 1012 viral particles (vp) in two cohorts of patients with MPM (7 patients) and MPE (3 patients). Subjects were evaluated for (a) toxicity, (b) gene transfer, (c) humoral, cellular, and cytokine-mediated immune responses, and (d) tumor responses via 18-fluorodeoxyglucose-positron emission tomography scans and chest computed tomography scans. Results: Intrapleural Ad.IFN-β was generally well tolerated with transient lymphopenia as the most common side effect. The maximally tolerated dose achieved was 9 × 1011 vp secondary to idiosyncratic dose-limiting toxicities (hypoxia and liver function abnormalities) in two patients treated at 3 × 1012 vp. The presence of the vector did not elicit a marked cellular infiltrate in the pleural space. Intrapleural levels of cytokines were highly variable at baseline and after response to gene transfer. Gene transfer was documented in 7 of the 10 patients by demonstration of IFN-β message or protein. Antitumor immune responses were elicited in 7 of the 10 patients and included the detection of cytotoxic T cells (1 patient), activation of circulating natural killer cells (2 patients), and humoral responses to known (Simian virus 40 large T antigen and mesothelin) and unknown tumor antigens (7 patients). Four of 10 patients showed meaningful clinical responses defined as disease stability and/or regression on 18-fluorodeoxyglucose-positron emission tomography and computed tomography scans at day 60 after vector infusion. Conclusions: Intrapleural instillation of Ad.IFN-β is a potentially useful approach for the generation of antitumor immune responses in MPM and MPE patients and should be investigated further for overall clinical efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.