The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, cell survival, and autophagy. Allosteric inhibitors of mTORC1, such as rapamycin, have been extensively used to study tumor cell growth, proliferation, and autophagy but have shown only limited clinical utility. Here, we describe AZD8055, a novel ATP-competitive inhibitor of mTOR kinase activity, with an IC 50 of 0.8 nmol/L. AZD8055 showed excellent selectivity (∼1,000-fold) against all class I phosphatidylinositol 3-kinase (PI3K) isoforms and other members of the PI3K-like kinase family. Furthermore, there was no significant activity against a panel of 260 kinases at concentrations up to 10 μmol/L. AZD8055 inhibits the phosphorylation of mTORC1 substrates p70S6K and 4E-BP1 as well as phosphorylation of the mTORC2 substrate AKT and downstream proteins. The rapamycin-resistant T37/46 phosphorylation sites on 4E-BP1 were fully inhibited by AZD8055, resulting in significant inhibition of cap-dependent translation. In vitro, AZD8055 potently inhibits proliferation and induces autophagy in H838 and A549 cells. In vivo, AZD8055 induces a dose-dependent pharmacodynamic effect on phosphorylated S6 and phosphorylated AKT at plasma concentrations leading to tumor growth inhibition. Notably, AZD8055 results in significant growth inhibition and/or regression in xenografts, representing a broad range of human tumor types. AZD8055 is currently in phase I clinical trials. Cancer Res; 70(1); 288-98. ©2010 AACR.
Constitutive activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in human cancers is often associated with mutational activation of BRAF or RAS. MAPK/ERK kinase 1/2 kinases lie downstream of RAS and BRAF and are the only acknowledged activators of ERK1/ 2, making them attractive targets for therapeutic intervention. AZD6244 (ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of MAPK/ERK kinase 1/2. In vitro cell viability inhibition screening of a tumor cell line panel found that lines harboring BRAF or RAS mutations were more likely to be sensitive to AZD6244. The in vivo mechanisms by which AZD6244 inhibits tumor growth were investigated. Chronic dosing with 25 mg/kg AZD6244 bd resulted in suppression of growth of Colo-205, Calu-6, and SW-620 xenografts, whereas an acute dose resulted in significant inhibition of ERK1/2 phosphorylation. Increased cleaved caspase-3, a marker of apoptosis, was detected in Colo-205 and Calu-6 but not in SW-620 tumors where a significant decrease in cell proliferation was detected. Chronic dosing of AZD6244 induced a morphologic change in SW-620 tumors to a more differentiated phenotype. The potential of AZD6244 in combination with cytotoxic drugs was evaluated in mice bearing SW-620 xenografts. Treatment with tolerated doses of AZD6244 and either irinotecan or docetaxel resulted in significantly enhanced antitumor efficacy relative to that of either agent alone. These results indicate that AZD6244 has potential to inhibit proliferation and induce apoptosis and differentiation, but the response varies between different xenografts. Moreover, enhanced antitumor efficacy can be obtained by combining AZD6244 with the cytotoxic drugs irinotecan or docetaxel.
BackgroundTAK-438 (vonoprazan) is a potassium-competitive acid blocker that reversibly inhibits gastric H+, K+-ATPase.AimTo evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of TAK-438 in healthy Japanese and non-Japanese men.MethodsIn two Phase I, randomised, double-blind, placebo-controlled studies, healthy men (Japan N = 60; UK N = 48) received TAK-438 10–40 mg once daily at a fixed dose level for 7 consecutive days. Assessments included safety, tolerability, pharmacokinetics and pharmacodynamics (intragastric pH).ResultsPlasma concentration–time profiles of TAK-438 at all dose levels showed rapid absorption (median Tmax ≤2 h). Mean elimination half-life was up to 9 h. Exposure was slightly greater than dose proportional, with no apparent time-dependent inhibition of metabolism. There was no important difference between the two studies in AUC0-tau on Day 7. TAK-438 caused dose-dependent acid suppression. On Day 7, mean 24-h intragastric pH>4 holding time ratio (HTR) with 40 mg TAK-438 was 100% (Japan) and 93.2% (UK), and mean night-time pH>4 HTR was 100% (Japan) and 90.4% (UK). TAK-438 was well tolerated. The frequency of adverse events was similar at all dose levels and there were no serious adverse events. There were no important increases in serum alanine transaminase activity. Serum gastrin and pepsinogen I and II concentrations increased with TAK-438 dose.ConclusionsTAK-438 in multiple rising oral dose levels of 10–40 mg once daily for 7 days was safe and well tolerated in healthy men and caused rapid, profound and sustained suppression of gastric acid secretion throughout each 24-h dosing interval. Clinicaltrials.gov identifiers: NCT02123953 and NCT02141711.
OBJECTIVES:To evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-438 (vonoprazan, a potassium-competitive acid blocker) in healthy male subjects.METHODS:In two phase I, randomized, double-blind, placebo-controlled, single rising-dose studies, healthy male subjects (Japan N=84; UK N=63) received a single TAK-438 dose (1–120 mg in Japan and 1–40 mg in the UK). Assessments included safety, tolerability, pharmacokinetics, and pharmacodynamics (intragastric pH).RESULTS:Plasma concentration–time profiles of TAK-438 at all dose levels showed rapid absorption (median Tmax up to 2 h). Estimated mean elimination half-life was up to 9 h. Exposure was slightly greater than dose proportional. No clear difference in TAK-438 pharmacokinetics was observed between Japanese and non-Japanese subjects. Acid suppression was dose dependent and similar in both studies. The 24-h intragastric pH ≥4 holding time ratio with 40 mg TAK-438 was 92% in Japan and 87% in the UK. TAK-438 was well tolerated, with no adverse events reported in Japanese subjects; 10 of 63 UK subjects experienced 12 treatment-emergent adverse events (non-serious). Increases in serum gastrin and pepsinogen I and II concentrations were observed at doses ≥10 mg, but there were no changes in alanine aminotransferase concentrations.CONCLUSIONS:Single oral doses of TAK-438 20–120 mg caused rapid, profound, and 24-h suppression of gastric acid secretion in healthy male subjects, regardless of geographical region, and TAK-438 was well tolerated at all doses studied, making it a potential alternative to proton pump inhibitors for the treatment of acid-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.