Active release antimicrobial coatings for medical devices have been developed to prevent and treat biofilm implant-related infections. To date, only a handful of coatings have been put into clinical use, with limited success. In this study, a novel antimicrobial compound was incorporated into a silicone (polydimethylsiloxane or PDMS) polymer to develop a novel active release coating that addressed several limitations of current device coatings. The efficacy of this coating was optimized using an in vitro flow cells system, then translated to an animal model of a simulated Type IIIB open fracture wherein well-established biofilms were used as initial inocula. Results indicated that the novel coating was able to prevent infection in 100% (9/9) of animals that were treated with biofilms and the novel coating (treatment group). In contrast, 100% (9/9) of animals that were inoculated with biofilms and not treated with the coating (positive control), did develop infection. Nine animals were used as negative controls, i.e., those that were not treated with biofilms, and showed a rate of infection of 11% (1/9). Eight animals were treated with the novel coating only to determine its effect on host tissue. Results indicated that the novel active release coating may have significant promise for future application to prevent biofilm implant-related infections in patients.
Currently, the majority of animal models that are used to study biofilm‐related infections use planktonic bacterial cells as initial inocula to produce positive signals of infection in biomaterials studies. However, the use of planktonic cells has potentially led to inconsistent results in infection outcomes. In this study, well‐established biofilms of methicillin‐resistant Staphylococcus aureus were grown and used as initial inocula in an animal model of a Type IIIB open fracture. The goal of the work was to establish, for the first time, a repeatable model of biofilm implant‐related osteomyelitis, wherein biofilms were used as initial inocula to test combination biomaterials. Results showed that 100% of animals that were treated with biofilms developed osteomyelitis, whereas 0% of animals not treated with biofilm developed infection. The development of this experimental model may lead to an important shift in biofilm and biomaterials research by showing that when biofilms are used as initial inocula, they may provide additional insights into how biofilm‐related infections in the clinic develop and how they can be treated with combination biomaterials to eradicate and/or prevent biofilm formation. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 2012.
The CDC biofilm reactor is a robust culture system with high reproducibility in which biofilms can be grown for a wide variety of analyses. Multiple material types are available as growth substrates, yet data from biofilms grown on biologically relevant materials is scarce, particularly for antibiotic efficacy against differentially supported biofilms. In this study, CDC reactor holders were modified to allow growth of biofilms on collagen, a biologically relevant substrate. Susceptibility to multiple antibiotics was compared between biofilms of varying species grown on collagen versus standard polycarbonate coupons. Data indicated that in 13/18 instances, biofilms on polycarbonate were more susceptible to antibiotics than those on collagen, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. These outcomes may influence the translatability of antibiotic susceptibility profiles that have been collected for biofilms on hard plastic materials. Data may also help to advance information on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.