Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease.
Small interfering RNAs (siRNAs) targeting hepatic angiotensinogen ( Agt ) may provide long-lasting antihypertensive effects, but the optimal approach remains unclear. Here, we assessed the efficacy of a novel AGT siRNA in spontaneously hypertensive rats. Rats were treated with vehicle, siRNA (10 mg/kg fortnightly; subcutaneous), valsartan (31 mg/kg per day; oral), captopril (100 mg/kg per day; oral), valsartan+siRNA, or captopril+valsartan for 4 weeks (all groups, n=8). Mean arterial pressure (recorded via radiotelemetry) was lowered the most by valsartan+siRNA (−68±4 mm Hg), followed by captopril+valsartan (−54±4 mm Hg), captopril (−23±2 mm Hg), siRNA (−14±2 mm Hg), and valsartan (−10±2 mm Hg). siRNA and captopril monotherapies improved cardiac hypertrophy equally, but less than the dual therapies, which also lowered NT-proBNP (N-terminal pro-B-type natriuretic peptide). Glomerular filtration rate, urinary NGAL (neutrophil gelatinase-associated lipocalin), and albuminuria were unaffected by treatment. siRNA lowered circulating AGT by 97.9±1.0%, and by 99.8±0.1% in combination with valsartan. Although siRNA greatly reduced renal Ang (angiotensin) I, only valsartan+siRNA suppressed circulating and renal Ang II. This coincided with decreased renal sodium hydrogen exchanger type 3 and phosphorylated sodium chloride cotransporter abundances. Renin and plasma K + increased with every treatment, but especially during valsartan+siRNA; no effects on aldosterone were observed. Collectively, these data indicate that Ang II elimination requires >99% suppression of circulating AGT. Maximal blockade of the renin-angiotensin system, achieved by valsartan+siRNA, yielded the greatest reduction in blood pressure and cardiac hypertrophy, whereas AGT lowering alone was as effective as conventional renin-angiotensin system inhibitors. Given its stable and sustained efficacy, lasting weeks, RNA interference may offer a unique approach to improving therapy adherence and treating hypertension.
Several studies have shown improved efficacy of cholesteryl-conjugated phosphorothioate antisense oligodeoxynucleotides. To gain insight into the mechanisms of the improved efficacy in vivo, we investigated the disposition of ISIS-9388, the 3'-cholesterol analog of the ICAM-1-specific phosphorothioate oligodeoxynucleotide ISIS-3082, in rats. Intravenously injected [(3)H]ISIS-9388 was cleared from the circulation with a half-life of 49.9 +/- 2.2 min (ISIS-3082, 23.3 +/- 3.8 min). At 3 h after injection, the liver contained 63.7 +/- 3. 3% of the dose. Compared to ISIS-3082, the hepatic uptake of ISIS-9388 is approximately 2-fold higher. Endothelial, Kupffer and parenchymal cells accounted for 45.7 +/- 5.7, 33.0 +/- 5.9 and 21.3 +/- 2.6% of the liver uptake of [(3)H]ISIS-9388, respectively, and intracellular concentrations of approximately 2, 75 and 50 microM, respectively, could be reached in these cells (1 mg/kg dose). Preinjection with polyinosinic acid or poly-adenylic acid reduced the hepatic uptake of [(3)H]ISIS-9388, which suggests the involvement of (multiple) scavenger receptors. Size exclusion chromatography of mixtures of the oligonucleotides and rat plasma indicated that ISIS-9388 binds to a larger extent to high molecular weight proteins than ISIS-3082. Analysis by agarose gel electrophoresis indicated that ISIS-9388 binds more tightly to plasma proteins than ISIS-3082. The different interaction of the oligonucleotides with plasma proteins possibly explains their different dispositions. We conclude that cholesterol conjugation results in high accumulation of phosphorothioate oligodeoxynucleotides in various liver cell types, which is likely to be beneficial for antisense therapy of liver-associated diseases.
Chronic increased pulmonary blood flow is considered a pre-requisite for the induction of advanced vascular lesions in pulmonary arterial hypertension in congenital heart defects. The aim of the present study was to characterise the effects of increased pulmonary flow induced by an aortocaval shunt in the monocrotaline rat model for pulmonary hypertension in terms of survival, haemodynamics, pathology and histology.Male Wistar rats were injected with monocrotaline followed by the creation of an abdominal aortocaval shunt. Animals were sacrificed when displaying symptoms of weight loss or dyspnoea, 4-5 weeks after the creation of the shunt.Echocardiography identified increased ventricular dimensions in shunted rats and right ventricular hypertrophy in monocrotaline-treated rats. At similar pulmonary artery pressures, shunted monocrotaline rats displayed higher morbidity and mortality, increased pulmonary-tosystemic artery pressure ratios and increased right ventricular hypertrophy compared with nonshunted monocrotaline rats. Histological assessment demonstrated increased number and diameter of pre-acinar pulmonary arteries. Intra-acinar vessel remodelling and occlusion occurred to a similar extent in shunted and nonshunted monocrotaline rats.In conclusion, increased pulmonary blood flow in monocrotaline-induced pulmonary hypertension is associated with increased morbidity, mortality, and unfavourable haemodynamic and cardiac effects. These effects could be attributed to more pronounced right heart failure rather than to altered intra-acinar pulmonary vessel remodelling. KEYWORDS: Animal model, congenital heart disease, plexogenic arteriopathy, pulmonary arterial hypertension, pulmonary vascular histopathology, right heart failure P atients with congenital heart disease associated with systemic-to-pulmonary shunts, increasing both pulmonary blood flow and pressure, develop characteristic pulmonary vascular lesions as concentric-laminar intimal fibrosis and plexiform lesions. These vascular lesions are characterised by vascular smooth muscle and endothelial cell proliferation. In contrast, in patients with congenital heart defects and isolated increased pulmonary artery pressure (PAP), these lesions almost never develop [1,2]. The current authors hypothesise that, in congenital heart defects, increased pulmonary blood flow, in addition to increased pressure, is a pre-requisite for the development of the hallmark lesions of advanced pulmonary arterial hypertension.Animal models with an isolated increase in PAP, e.g. induced by the toxic alkaloid monocrotaline, show pulmonary vascular remodelling, but fail to display the more advanced lesions as described previously [3-5].The role of increased pulmonary blood flow has been explored in animal models [6]. In rat models with isolated increased flow [7,8], a moderate increase in pulmonary pressure and medial hypertrophy has been observed, but only after a prolonged period of exposure.When the additional effect of flow was explored in existing rat models for pul...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.