Abstract. The Asian summer monsoon anticyclone (ASMA) is a major meteorological system of the upper troposphere–lower stratosphere (UTLS) during boreal summer. It is known to contain enhanced tropospheric trace gases and aerosols, due to rapid lifting from the boundary layer by deep convection and subsequent horizontal confinement. Given its dynamical structure, the ASMA represents an efficient pathway for the transport of pollutants to the global stratosphere. A detailed understanding of the thermal structure and processes in the ASMA requires accurate in situ measurements. Within the StratoClim project we performed state-of-the-art balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter from two stations on the southern slopes of the Himalayas. In total, 63 balloon soundings were conducted during two extensive monsoon-season campaigns, in August 2016 in Nainital, India (29.4∘ N, 79.5∘ E), and in July–August 2017 in Dhulikhel, Nepal (27.6∘ N, 85.5∘ E); one shorter post-monsoon campaign was also carried out in November 2016 in Nainital. These measurements provide unprecedented insights into the UTLS thermal structure, the vertical distributions of water vapor, ozone and aerosols, cirrus cloud properties and interannual variability in the ASMA. Here we provide an overview of all of the data collected during the three campaign periods, with focus on the UTLS region and the monsoon season. We analyze the vertical structure of the ASMA in terms of significant levels and layers, identified from the temperature and potential temperature lapse rates and Lagrangian backward trajectories, which provides a framework for relating the measurements to local thermodynamic properties and the large-scale anticyclonic flow. Both the monsoon-season campaigns show evidence of deep convection and confinement extending up to 1.5–2 km above the cold-point tropopause (CPT), yielding a body of air with high water vapor and low ozone which is prone to being lifted further and mixed into the free stratosphere. Enhanced aerosol backscatter also reveals the signature of the Asian tropopause aerosol layer (ATAL) over the same region of altitudes. The Dhulikhel 2017 campaign was characterized by a 5 K colder CPT on average than in Nainital 2016 and a local water vapor maximum in the confined lower stratosphere, about 1 km above the CPT. Data assessment and modeling studies are currently ongoing with the aim of fully exploring this dataset and its implications with respect to stratospheric moistening via the ASMA system and related processes.
Across High Asia, the amount, timing, and spatial patterns of snow and ice melt play key roles in providing water for downstream irrigation, hydropower generation, and general consumption. The goal of this paper is to distinguish the specific contribution of seasonal snow versus glacier ice melt in the major basins of High Mountain Asia: Ganges, Brahmaputra, Indus, Amu Darya, and Syr Darya. Our methodology involves the application of MODIS-derived remote sensing products to separately calculate daily melt outputs from snow and glacier ice. Using an automated partitioning method, we generate daily maps of (1) snow over glacier ice, (2) exposed glacier ice, and (3) snow over land. These are inputs to a temperature index model that yields melt water volumes contributing to river flow. Results for the five major High Mountain Asia basins show that the western regions are heavily reliant on snow and ice melt sources for summer dry season flow when demand is at a peak, whereas monsoon rainfall dominates runoff during the summer period in the east. While uncertainty remains in the temperature index model applied here, our approach to partitioning melt from seasonal snow and glacier ice is both innovative and systematic and more constrained than previous efforts with similar goals.
Abstract.We examine the distribution of aerosols and associated optical/radiative properties in the Gangetic-Himalayan region from simultaneous radiometric measurements over the Indo-Gangetic Plains (IGP) and the foothill/southern slopes of the Himalayas during the 2009 pre-monsoon season. Enhanced dust transport extending from the Southwest Asian arid regions into the IGP, results in seasonal mean (April-June) aerosol optical depths of over 0.6 -highest over Southern Asia. The influence of dust loading is greater over the Western IGP as suggested by pronounced coarse mode peak in aerosol size distribution and spectral single scattering albedo (SSA). Transported dust in the IGP, driven by prevailing westerly airmass, is found to be more absorbing (SSA 550 nm <0.9) than the near-desert region in Northwestern (NW) India suggesting mixing with carbonaceous aerosols in the IGP. On the contrary, significantly reduced dust transport is observed over eastern IGP and foothill/elevated Himalayan slopes in Nepal where strongly absorbing haze is prevalent, as indicated by lower SSA (0.85-0.9 at 440-1020 nm), suggesting presence of more absorbing aerosols compared to IGP. Additionally, our observations show a distinct diurnal pattern of aerosols with characCorrespondence to: R. Gautam (ritesh.gautam@nasa.gov) teristic large afternoon peak, from foothill to elevated mountain locations, associated with increased upslope transport of pollutants -that likely represent large-scale lifting of absorbing aerosols along the elevated slopes during pre-monsoon season. In terms of radiative impact of aerosols, over the source region of NW India, diurnal mean reduction in solar radiation fluxes was estimated to be 19-23 Wm −2 at surface (12-15 % of the surface solar insolation). Furthermore, based on limited observations of aerosol optical properties during the pre-monsoon period and comparison of our radiative forcing estimates with published literature, there exists a general spatial heterogeneity in the regional aerosol forcing, associated with the absorbing aerosol distribution over northern India, with both diurnal mean surface forcing and forcing efficiency over the IGP exceeding that over Northwestern India. Finally, the role of the seasonal progressive buildup of aerosol loading and water vapor is investigated in the observed net aerosol radiative effect over Northwestern India. The radiative impact of water vapor is found to amplify the net regional aerosol radiative forcing suggesting that the two exert forcing in tandem leading to enhanced surface cooling. It is suggested that water vapor contribution should be taken into account while assessing aerosol forcing impact for this region and other seasonally similar environments.
ABSTRACT. Three debris-free glaciers with strongly differing annual glaciological glacier-wide mass balances (MBs) are monitored in the Everest region (central Himalaya, Nepal). The mass budget of Mera Glacier (5.1 km 2 in 2012), located in the southern part of this region, was balanced during 2007-15, whereas Pokalde (0.1 km 2 in 2011) and West Changri Nup glaciers (0.9 km 2 in 2013), ∼30 km further north, have been losing mass rapidly with annual glacier-wide MBs of −0.69 ± 0.28 m w.e. a −1 (2009-15) and −1.24 ± 0.27 m w.e. a −1 (2010-15), respectively. An analysis of high-elevation meteorological variables reveals that these glaciers are sensitive to precipitation, and to occasional severe cyclonic storms originating from the Bay of Bengal. We observe a negative horizontal gradient of annual precipitation in south-to-north direction across the range (≤−21 mm km −1 , i.e. −2% km −1 ). This contrasted mass-balance pattern over rather short distances is related (i) to the low maximum elevation of Pokalde and West Changri Nup glaciers, resulting in years where their accumulation area ratio is reduced to zero and (ii) to a steeper vertical gradient of MB for glaciers located in the inner arid part of the range.
We examine the distribution of aerosols and associated optical/radiative properties in the Gangetic-Himalayan region from simultaneous radiometric measurements over the Indo-Gangetic Plains (IGP) and the foothill/slopes of the Himalayas during the 2009 pre-monsoon season. Enhanced dust transport extending from the Southwest Asian arid regions into the IGP, results in seasonal mean (April–June) aerosol optical depths of over 0.6 – highest over southern Asia. The influence of dust loading is greater over the western IGP as suggested by pronounced coarse mode peak in aerosol size distribution and spectral single scattering albedo (SSA). The transported dust in the IGP, driven by prevailing westerly airmass, is found to be more absorbing (SSA<sub>550 nm</sub> ~0.89) than the near-desert region in NW India (SSA<sub>550 nm</sub> ~0.91) suggesting mixing with carbonaceous aerosols in the IGP. On the contrary, significantly reduced dust transport is observed over eastern IGP and foothill/elevated slopes in Nepal where strongly absorbing haze is prevalent, associated with upslope transport of pollution, as indicated by low values of SSA (0.85–0.9 for the wavelength range of 440–1020 nm), suggesting presence of more absorbing aerosols compared to IGP. Assessment of the radiative impact of aerosols over NW India suggests diurnal mean reduction in solar radiation fluxes of 19–23 Wm<sup>−2</sup> at surface (12–15 % of the surface solar insolation). Based on limited observations of aerosol optical properties during the pre-monsoon period and comparison of our radiative forcing estimates with published literature, there exists spatial heterogeneity in the regional aerosol forcing, associated with the absorbing aerosol distribution over northern India, with both diurnal mean surface forcing and forcing efficiency over the IGP exceeding that over NW India. Additionally, the role of the seasonal progressive buildup of aerosol loading and water vapor is investigated in the observed net aerosol forcing over NW India. The radiative impact of water vapor is found to amplify the net regional aerosol radiative forcing suggesting that the two exert forcing in tandem leading to enhanced surface cooling. It is suggested that water vapor contribution should be taken into account while assessing aerosol forcing impact for this region and other seasonally similar environments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.