IntroductionThe aim of the study was to evaluate and compare the microcirculatory perfusion during experimental sepsis in different potentially available parts of the body, such as sublingual mucosa, conjunctiva of the eye, and mucosa of jejunum and rectum.MethodsPigs were randomly assigned to sepsis (n = 9) and sham (n = 4) groups. The sepsis group received a fixed dose of live Escherichia coli infusion over a 1-hour period (1.8 × 109/kg colony-forming units). Animals were observed 5 hours after the start of E. coli infusion. In addition to systemic hemodynamic assessment, we performed conjunctival, sublingual, jejunal, and rectal evaluation of microcirculation by using Sidestream Dark Field (SDF) videomicroscopy at the same time points: at baseline, and at 3 and 5 hours after the start of live E. coli infusion. Assessment of microcirculatory parameters of convective oxygen transport (microvascular flow index (MFI) and proportion of perfused vessels (PPV)), and diffusion distance (perfused vessel density (PVD) and total vessel density (TVD)) was done by using a semiquantitative method.ResultsInfusion of E. coli resulted in a hypodynamic state of sepsis associated with low cardiac output and increased systemic vascular resistance despite fluid administration. Significant decreases in MFI and PPV of small vessels were observed in sublingual, conjunctival, jejunal, and rectal locations 3 and 5 hours after the start of E. coli infusion in comparison with baseline variables. Correlation between sublingual and conjunctival (r = 0.80; P = 0.036), sublingual and jejunal (r = 0.80; P = 0.044), and sublingual and rectal (r = 0.79; P = 0.03) MFI was observed 3 hours after onset of sepsis. However, this strong correlation between the sublingual and other regions disappeared 5 hours after the start of E. coli infusion. Overall, the sublingual mucosa exhibited the most-pronounced alterations of microcirculatory flow in comparison with conjunctival, jejunal, and rectal microvasculature (P < 0.05).ConclusionsIn this pig model, a time-dependent correlation exists between sublingual and microvascular beds during the course of a hypodynamic state of sepsis.
The emergence of drug-resistant Staphylococcus aureus is responsible for high morbidity and mortality worldwide. New therapeutic options are needed to fight the increasing antimicrobial resistance among S. aureus in the clinical setting. We, therefore, characterized the in silico absorption, distribution, metabolism, elimination, and toxicity (ADMET) and in vitro antimicrobial activity of 5-nitro-2-thiophenecarbaldehyde N-((E)-(5-nitrothienyl)methylidene)hydrazone (KTU-286) against drug-resistant S. aureus strains with genetically defined resistance mechanisms. The antimicrobial activity of KTU-286 was determined by CLSI recommendations. The ADMET properties were estimated by using in silico modeling. The activity on biofilm integrity was examined by crystal violet assay. KTU-286 demonstrated low estimated toxicity and low skin permeability. The highest antimicrobial activity was observed among pan-susceptible (Pan-S) S. aureus (minimal inhibitory concentration (MIC) 0.5–2.0 µg/mL, IC50 = 0.460 µg/mL), followed by vancomycin resistant S. aureus (VRSA) (MIC 4.0 µg/mL, IC50 = 1.697 µg/mL) and methicillin-resistant S. aureus (MRSA) (MIC 1.0–16.0 µg/mL, IC50 = 2.282 µg/mL). KTU-286 resulted in significant (p < 0.05) loss of S. aureus biofilm integrity in vitro. Further studies are needed for a better understanding of safety, synergistic relationship, and therapeutic potency of KTU-286.
(2009). Nationwide survey of extendedspectrum b-lactamase-producing Enterobacteriaceae in the French community setting.
BackgroundWe have identified a novel class 1 integron (1503 bp), named In671 in a clinical Pseudomonas aeruginosa isolate. Integron sequence analysis revealed two gene cassettes, one coding for a new OXA-type β-lactamase designated as OXA-205 and the other coding for the aadB gene that is responsible for aminoglycoside resistance. The 266 amino acid sequence of OXA-205 revealed that this β-lactamase belongs to the Ambler class D showing highest sequence homology to the OXA-2 sub-lineage. Our objective was to purify and characterize β-lactamase OXA-205.MethodsEscherichia coli cells were transformed with a plasmid containing cloned blaOXA-205 gene from P. aeruginosa. Purification of overproduced OXA-205 consisted of a single ion-exchange chromatography step. SDS-PAGE and isoelectric focusing were performed to determine the molecular mass and pI, respectively. Size-exclusion chromatography was undertaken to determine the OXA-205 oligomerization state. Substrate hydrolysis reactions were employed to assess enzyme kinetic parameters.ResultsPurification of OXA-205 yielded the enzyme with >95 % purity (as verified by SDS-PAGE). Approximate yield of the protein was estimated to be 20 mg per liter of culture. OXA-205 had a pI at 8.1, molecular mass of 26 kDa and a monomeric native structure. Kinetic analysis revealed that OXA-205 hydrolyzed narrow spectrum substrates, including ampicillin, carbenicillin, oxacillin, penicillin G, cefazolin and cefuroxime. Additionally, we observed a substrate inhibition profile towards carbenicillin and oxacillin, but not with ampicillin or penicillin G. Our results also show that OXA-205 conferred unusually high (among class D β-lactamases) resistance towards inhibition by NaCl.ConclusionsOXA-205 can be considered a narrow spectrum monomeric β-lactamase that demonstrates unusually high resistance profile towards inhibition by NaCl.Electronic supplementary materialThe online version of this article (doi:10.1186/s12941-015-0113-1) contains supplementary material, which is available to authorized users.
Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of neonatal infections. Yet, detailed assessment of the genotypic and phenotypic factors associated with GBS carriage, mother-to-baby transmission, and GBS infection in neonates and adults is lacking. Understanding the distribution of GBS genotypes, including the predominance of different serotypes, antimicrobial resistance (AMR) genes, and virulence factors, is likely to help to prevent GBS diseases, as well as inform estimates of the efficacy of future GBS vaccines. To this end, we set out to characterise GBS isolates collected from pregnant and non-pregnant women in Kaunas region in Lithuania. Whole genome sequences of 42 GBS isolates were analysed to determine multi-locus sequence typing (MLST), the presence of acquired AMR and surface protein genes, and the phylogenetic relatedness of isolates. We identified serotypes Ia (42.9%, 18/42), III (33.3%, 14/42), V (21.4%, 9/42), and a single isolate of serotype Ib. Genomic analyses revealed high diversity among isolates, with 18 sequence types (STs) identified, including three novel STs. 85.7% (36/42) of isolates carried at least one AMR gene: tetM or tetO (35/42), ermB or lsaC (8/42) and ant6-Ia and aph3-III (2/42). This study represents the first genomic analysis of GBS isolated from women in Lithuania and contributes to an improved understanding of the global spread of GBS genotypes and phenotypes, laying the foundations for future GBS surveillance in Lithuania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.