We show that polymeric materials characterized by two length scales are obtained if diblock copolymers are mixed with amphiphilic selective solvents, leading to self-organization which combines the "block copolymer length scale" with a much shorter "nanoscale". In this work, the amphiphilic compound is 3-n-pentadecylphenol (PDP) which is hydrogen-bonded to the pyridine group of polystyreneblock-poly(4-vinylpyridine), i.e., PS-b-P4VP. The molecular architecture resembles comb-coil diblock copolymers A-block-(B-graft-C) but is obtained using the supramolecular assembly route. The structures were determined with a combination of transmission electron microscopy and small-angle X-ray scattering. On the block copolymer scale (300 Å range), the PS blocks are microphase-separated from the P4VP-(PDP) x blocks, where x denotes the ratio between the number of phenol and pyridine groups. For PS-b-P4VP block copolymers having a spherical morphology and P4VP as the minority component, the structure of PS-b-P4VP(PDP)x changes from spherical to hexagonal and further to lamellar as a function of the amount of PDP added. For all comb-coil diblock copolymer morphologies, the P4VP(PDP)x domains are further "nanophase-separated" into lamellar structures due to microphase separation of the comb copolymer-like complex between P4VP and PDP. The morphology diagram is presented for stoichiometric conditions (x ) 1), using a range of different PS-b-P4VP block copolymers.
Properly selected hydrogen bonding suffices to induce mesomorphic structures in mixtures of flexible polymers and nonmesogenic surfactants. For poly(4-vinylpyridine)-3-pentadecylphenol (P4VP-(PDP)x) complexes, the long period of the lamellar structure decreases as x -1 (x is the number of PDP molecules per P4VP repeat unit) in complete contrast to similar polyelectrolyte systems. Upon cooling from 80 °C to the room temperature, the long period gradually increases and levels off at around 30 °C at a value which is approximately 4 Å above the starting value. After an induction time, a structural transformation occurs in the highly complexed samples, due to the crystallization of the alkyl side chains. It is accompanied by a sudden decrease in the long period of approximately 5 Å. However, the structure is not stable and after an additional induction time both structures are present in the samples. Arguments to explain most of the observed phenomena will be given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.