ABT-737 is a novel and potent Bcl-2 antagonist with singleagent activity against small-cell lung cancer (SCLC) cell lines. Here, we evaluated the contribution of Bcl-2 family members to the in vitro cellular response of several SCLC cell lines to ABT-737. Relatively higher levels of Bcl-2, Bcl-X L , Bim and Noxa, and lower levels of Mcl-1 characterized naïve SCLC cell lines that were sensitive to ABT-737. Conversely, a progressive decrease in the relative levels of Bcl-2 and Noxa and a progressive increase in Mcl-1 levels characterized the increased resistance of H146 cells following chronic exposure to ABT-737. Knockdown of Mcl-1 with small interfering RNA sensitized two resistant SCLC cell lines H196 and DMS114 to ABT-737 by enhancing the induction of apoptosis. Likewise, up-regulation of Noxa sensitized H196 cells to ABT-737. Combination treatment with DNA-damaging agents was extremely synergistic with ABT-737 and was associated with the down-regulation of Mcl-1 and the up-regulation of Noxa, Puma, and Bim in H196 cells. Thus, SCLC cells sensitive to ABT-737 expressed the target proteins Bcl-2 and Bcl-X L , whereas Mcl-1 and factors regulating Mcl-1 function seem to contribute to the overall resistance of SCLC cells to ABT-737. Overall, these observations provide further insight as to the mechanistic bases for ABT-737 efficacy in SCLC and will be helpful for profiling patients and aiding in the rational design of combination therapies. [Cancer Res 2007;67(3):1176-83]
The synthesis and structure-activity relationship study of a series of compounds with heterocycles in place of the cis double bond in combretastatin A-4 (CA-4) are described. Substituted tosylmethyl isocyanides were found to be the key intermediates in construction of the heterocycles. Cytotoxicities of the heterocycle-based CA-4 analogues were evaluated against NCI-H460 and HCT-15 cancer cell lines. 3-Amino-4-methoxyphenyl and N-methyl-indol-5-yl were the best replacements for the 3-hydroxy-4-methoxyphenyl in CA-4. 4,5-Disubstituted imidazole was found to be the best for the replacement of the cis double bond in CA-4. Medicinal chemistry efforts led to the discovery of compounds 24h and 25f that were found to be 32 and 82% bioavailable, respectively, in rat. Evaluation of 24h and 25f against murine M5076 reticulum sarcoma in mice revealed that both compounds were orally efficacious with an increase in life span of 38.5 and 40.5%, respectively.
Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X L , and Bcl-w, which exhibits monotherapy efficacy in xenograft models of smallcell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X L versus Bcl-2 (K i 's of 0.80 and 67 nmol/L for Bcl-X L and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC 50 of <500 nmol/L in cells dependent on Bcl-X L for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy. (Cancer Res 2006; 66(17): 8731-9)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.