Context The effects of the COVID-19 pandemic on the incident cases of pediatric Type 1 (T1D) and Type 2 diabetes (T2D) are not clear. Objective To identify trends in incidence and presentation of pediatric new-onset T1D and T2D during the COVID-19 pandemic. Methods A retrospective chart review was conducted. Demographics, anthropometrics, and initial labs from patients ages 0-21 who presented with new-onset diabetes to a pediatric tertiary care center were recorded. Results During the pandemic incident cases of pediatric T1D increased from 31 in each of the prior two years to 46; an increase of 48%. Incident cases of pediatric T2D increased by 231% from 2019 to 2020. The number of incident cases of pediatric T2D increased significantly more than the number of incident cases of pediatric T1D (p-value = 0.009). Patients with T2D were more likely to present in DKA, though this was not statistically significant (p-value=0.093). Severe DKA was higher compared to moderate DKA (p-value = 0.036) in incident cases of pediatric T2D. During the pandemic, for the first time, incident cases of T2D accounted for more than half of the all newly diagnosed pediatric diabetes cases (53%). Conclusions There were more incident pediatric T1D and T2D cases as well as an increase in DKA severity in T2D at presentation during the COVID-19 pandemic. More importantly, incident T2D cases were higher than the incident T1D during the pandemic. This clearly suggests a disruption and change in the pediatric diabetes trends with profound individual and community health consequences.
Diazoxide use in NICU settings has increased over time. Infants receiving diazoxide commonly received diuretics.
To evaluate the contemporary prevalence of diabetic peripheral neuropathy (DPN) in participants with type 1 diabetes in the T1D Exchange Clinic Registry throughout the U.S. RESEARCH DESIGN AND METHODSDPN was assessed with the Michigan Neuropathy Screening Instrument Questionnaire (MNSIQ) in adults with ‡5 years of type 1 diabetes duration. A score of ‡4 defined DPN. Associations of demographic, clinical, and laboratory factors with DPN were assessed. RESULTSAmong 5,936 T1D Exchange participants (mean 6 SD age 39 6 18 years, median type 1 diabetes duration 18 years [interquartile range 11, 31], 55% female, 88% non-Hispanic white, mean glycated hemoglobin [HbA 1c ] 8.1 6 1.6% [65.3 6 17.5 mmol/mol]), DPN prevalence was 11%. Compared with those without DPN, DPN participants were older, had higher HbA 1c , had longer duration of diabetes, were more likely to be female, and were less likely to have a college education and private insurance (all P < 0.001). DPN participants also were more likely to have cardiovascular disease (CVD) (P < 0.001), worse CVD risk factors of smoking (P 5 0.008), hypertriglyceridemia (P 5 0.002), higher BMI (P 5 0.009), retinopathy (P 5 0.004), reduced estimated glomerular filtration rate (P 5 0.02), and Charcot neuroarthropathy (P 5 0.002). There were no differences in insulin pump or continuous glucose monitor use, although DPN participants were more likely to have had severe hypoglycemia (P 5 0.04) and/or diabetic ketoacidosis (P < 0.001) in the past 3 months. CONCLUSIONSThe prevalence of DPN in this national cohort with type 1 diabetes is lower than in prior published reports but is reflective of current clinical care practices. These data also highlight that nonglycemic risk factors, such as CVD risk factors, severe hypoglycemia, diabetic ketoacidosis, and lower socioeconomic status, may also play a role in DPN development.Diabetic neuropathy is a prevalent complication in patients with diabetes and a major cause of morbidity and mortality (1). Among the various forms of diabetic neuropathy, distal symmetric polyneuropathy (DPN) and diabetic autonomic neuropathies are by far the most studied (1).
Management of liver glycogen storage diseases (GSDs) primarily involves maintaining normoglycemia through dietary modifications and regular glucose monitoring. Self-monitoring of blood glucose is typically done 3-6 times per day, and may not sufficiently capture periods of asymptomatic hypoglycemia, particularly during sleep. Continuous glucose monitoring systems (CGMS) provide 24-h continuous glucose data and have been used effectively in diabetes mellitus to monitor metabolic control and optimize treatment. This is a relatively new approach in GSDs with only a handful of studies exploring this modality. In this study we used Dexcom CGMS to study the glycemic profile of 14 pediatric and six adult patients with GSD I, III, and IX. A total of 176 days of CGMS data were available. The CGMS was found to be a reliable tool in monitoring glucose levels and trends at all times of the day with good concordance with finger-stick glucose values. This study revealed that in addition to overnight hypoglycemia, CGMS can uncover previously undetected, subclinical, low glucose levels during daytime hours. Additionally, the CGMS detected daytime and overnight hyperglycemia, an often overlooked concern in liver GSDs. The CGMS with concurrent dietary adjustments made by a metabolic dietitian improved metabolic parameters and stabilized blood glucose levels. The CGMS was found to be a safe, effective, and reliable method for optimizing treatment in patients with GSD I, III, and IX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.