Purpose: A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled.Experimental Design: We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients.Results: We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR ¼ 2.914 (confidence interval 0.9286-9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stemlike biology have undergone a widespread epithelial-mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed.Conclusions: Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer.
SummarySynthetic sickness/lethality (SSL) can be exploited to develop therapeutic strategies for cancer. Deficiencies in the tumor suppressor proteins MLH1 and MSH2 have been implicated in cancer. Here we demonstrate that deficiency in MSH2 is SSL with inhibition of the DNA polymerase POLB, whereas deficiency in MLH1 is SSL with DNA polymerase POLG inhibition. Both SSLs led to the accumulation of 8-oxoG oxidative DNA lesions. MSH2/POLB SSL caused nuclear 8-oxoG accumulation, whereas MLH1/POLG SSL led to a rise in mitochondrial 8-oxoG levels. Both SSLs were rescued by silencing the adenine glycosylase MUTYH, suggesting that lethality could be caused by the formation of lethal DNA breaks upon 8-oxoG accumulation. These data suggest targeted, mechanism-based therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.