[1] In this study, we present the collation and analysis of the gridded land-based dataset of indices of temperature and precipitation extremes: HadEX2. Indices were calculated based on station data using a consistent approach recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices, resulting in the production of 17 temperature and 12 precipitation indices derived from daily maximum and minimum temperature and precipitation observations. High-quality in situ observations from over 7000 temperature and 11,000 precipitation meteorological stations across the globe were obtained to calculate the indices over the period of record available for each station. Monthly and annual indices were then interpolated onto a 3.75 Â 2.5 longitude-latitude grid over the period 1901-2010. Linear trends in the gridded fields were computed and tested for statistical significance. Overall there was very good agreement with the previous HadEX dataset during the overlapping data period. Results showed widespread significant changes in temperature extremes consistent with warming, especially for those indices derived from daily minimum temperature over the whole 110 years of record but with stronger trends in more recent decades. Seasonal results showed significant warming in all seasons but more so in the colder months. Precipitation indices also showed widespread and significant trends, but the changes were much more spatially heterogeneous compared with temperature changes. However, results indicated more areas with significant increasing trends in extreme precipitation amounts, intensity, and frequency than areas with decreasing trends.Citation: Donat, M. G., et al. (2013), Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset,
High resolution spectra of Galactic Black Holes (GBH) reveal the presence of highly ionised absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are an ubiquitous component of the jet-free soft states of all GBH. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV / Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionisation and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds, and their presence ubiquitously during the soft X-ray states suggests they are fundamental components of the accretion phenomenon.Comment: Accepted for publication in MNRAS Letter
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.