Purpose: We prospectively examined the role of tumor textural heterogeneity on positron emission tomography/computed tomography (PET/CT) in predicting survival compared with other clinical and imaging parameters in patients with non-small cell lung cancer (NSCLC).Experimental Design: The feasibility study consisted of 56 assessed consecutive patients with NSCLC (32 males, 24 females; mean age 67 AE 9.7 years) who underwent combined fluorodeoxyglucose (FDG) PET/ CT. The validation study population consisted of 66 prospectively recruited consecutive consenting patients with NSCLC (37 males, 29 females; mean age, 67.5 AE 7.8 years) who successfully underwent combined FDG PET/CT-dynamic contrast-enhanced (DCE) CT. Images were used to derive tumoral PET/CT textural heterogeneity, DCE CT permeability, and FDG uptake (SUV max ). The mean follow-up periods were 22.6 AE 13.3 months and 28.5AE 13.2 months for the feasibility and validation studies, respectively. Optimum threshold was determined for clinical stage and each of the above biomarkers (where available) from the feasibility study population. Kaplan-Meier analysis was used to assess the ability of the biomarkers to predict survival in the validation study. Cox regression determined survival factor independence.Results: Univariate analysis revealed that tumor CT-derived heterogeneity (P < 0.001), PET-derived heterogeneity (P ¼ 0.003), CT-derived permeability (P ¼ 0.002), and stage (P < 0Á001) were all significant survival predictors. The thresholds used in this study were derived from a previously conducted feasibility study. Tumor SUV max did not predict survival. Using multivariable analysis, tumor CT textural heterogeneity (P ¼ 0.021), stage (P ¼ 0.001), and permeability (P < 0.001) were independent survival predictors. These predictors were independent of patient treatment.Conclusions: Tumor stage and CT-derived textural heterogeneity were the best predictors of survival in NSCLC. The use of CT-derived textural heterogeneity should assist the management of many patients with NSCLC.
PurposePatients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF.MethodsConsecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances).ResultsThe pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001).ConclusionIPF patients have increased pulmonary uptake of 18F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring.
PurposeThere is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18F-FDG-PET/ CT to predict mortality in IPF.MethodsA total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18F-FDG-PET/CT. The overall maximum pulmonary uptake of 18F-FDG (SUVmax), the minimum pulmonary uptake or background lung activity (SUVmin), and target-to-background (SUVmax/ SUVmin) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan–Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18F-FDG-PET measurements and GAP score for risk stratification in IPF patients.ResultsDuring a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p < 0.001), high GAP index (p = 0.003), and high GAP stage (p = 0.003). Stepwise forward-Wald–Cox analysis revealed that the pulmonary TBR was independent of GAP classification (p = 0.010). The median survival in IPF patients with a TBR < 4.9 was 71 months, whilst in those with TBR > 4.9 was 24 months. Combining PET data with GAP data (“PET modified GAP score”) refined the ability to predict mortality.ConclusionsA high pulmonary TBR is independently associated with increased risk of mortality in IPF patients.Electronic supplementary materialThe online version of this article (10.1007/s00259-017-3917-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.