Progress toward understanding the biology of prostate cancer has been slow due to the few animal research models available to study the spectrum of this uniquely human disease. To develop an animal model for prostate cancer, several lines of transgenic mice were generated by using the prostate-specific rat probasin promoter to drive expression of the simian virus 40 large tumor antigencoding region. Mice expressing high levels of the transgene display progressive forms of prostatic disease that histologically resemble human prostate cancer, ranging from mild intraepithelial hyperplasia to large multinodular malignant neoplasia. Prostate tumors have been detected specirically in the prostate as early as 10 weeks ofage. Immunohistochemical analysis of tumor tissue has demonstrated that dorsolateral prostate-specific secretory proteins were confined to welldifferentiated ductal epithelial cells adjacent to, or within, the poorly differentiated tumor mass. Prostate tumors in the mice also display elevated levels of nuclear p53 and a decreased heterogeneous pattern of androgen-receptor expression, as observed in advanced human prostate cancer. The establishment of breeding lines of transgenic mice that reproducibly develop prostate cancer provides an animal model system to study the molecular basis of transformation of normal prostatic cells and the factors influencing the progression to metastatic prostate cancer.Prostate cancer will likely claim the lives of 35,000 men in the United States this year alone, and some 200,000 more men will be diagnosed with the disease (1). However, progress toward understanding the biology of prostate cancer and the development of new therapies for this disease has been slowed, in part, by the need for in vivo model systems that adequately reproduce the spectrum of benign, latent, aggressive, and metastatic forms of the human disease.Prostate cancer is a disease quite unique to man. Although naturally occurring prostatic disease has been reported in some canine (2) and rodent (3-5) species, these animals have not provided the appropriate models to adequately study the molecular mechanisms related to the early development and progression of human prostate cancer. To this end, we initiated a research program to establish a transgenic animal model for prostate cancer by using a prostate-specific transgene expression system that has been developed in our laboratories based on the regulatory elements of the rat probasin (rPB)-encoding gene.The rPB gene encodes an androgen-and zinc-regulated protein specific to the dorsolateral epithelium (6-8). Isolation of the rPB gene has facilitated identification of cis-acting androgen-response regions within the 5' flanking region (9). More recently, the ability of the prostate-specific rPB gene promoter to target heterologous genes specifically to the prostate in transgenic mice has been demonstrated (10). InThe publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "adver...
Increased Myc gene copy number is observed in human prostate cancer. To define Myc's functional role, we generated transgenic mice expressing human c-Myc in the mouse prostate. All mice developed murine prostatic intraepithelial neoplasia followed by invasive adenocarcinoma. Microarray-based expression profiling identified a Myc prostate cancer expression signature, which included the putative human tumor suppressor NXK3.1. Human prostate tumor databases revealed modules of human genes that varied in concert with the Myc prostate cancer signature. This module includes the Pim-1 kinase, a gene known to cooperate with Myc in tumorigenesis, and defines a subset of human, "Myc-like" human cancers. This approach illustrates how genomic technologies can be applied to mouse cancer models to guide evaluation of human tumor databases.
To facilitate the elucidation of the genetic events that may play an important role in the development or tumorigenesis of the prostate gland, we have generated a transgenic mouse line with prostate-specific expression of Cre recombinase. This line, named PB-Cre4, carries the Cre gene under the control of a composite promoter, ARR2PB which is a derivative of the rat prostate-specific probasin (PB) promoter. Based on RT-PCR detection of Cre mRNA in PB-Cre4 mice or Cre-mediated activation of LacZ activity in PB-Cre4/R26R double transgenic mice, it is conclusively demonstrated that Cre expression is post-natal and prostatic epithelium-specific. Although the Cre recombination is detected in all lobes of the mouse prostate, there is a significant difference in expression levels between the lobes, being highest in the lateral lobe, followed by the ventral, and then the dorsal and anterior lobes. Besides the prostate gland, no other tissues of the adult PB-Cre4 mice demonstrate significant Cre expression, except for a few scattered areas in the gonads and the stroma of the seminal vesicle. By crossing the PB-Cre4 animals with floxed RXRalpha allelic mice, we demonstrate that mice, whose conventional knockout of this gene is lethal in embryogenesis, could be propagated with selective inactivation of RXRalpha in the prostate. Taken together, the results show that the PB-Cre4 mice have high levels of Cre expression and a high penetrance in the prostatic epithelium. The PB-Cre4 mice will be a useful resource for genetic-based studies on prostate development and prostatic disease.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
The majority of cancer-related deaths are associated with metastasis; however, little is known about the mechanisms of this process. Hepsin is a cell surface serine protease that is markedly upregulated in human prostate cancer; however, the functional significance of this upregulation is unknown. We report here that hepsin overexpression in prostate epithelium in vivo causes disorganization of the basement membrane. Overexpression of hepsin in a mouse model of nonmetastasizing prostate cancer has no impact on cell proliferation, but causes disorganization of the basement membrane and promotes primary prostate cancer progression and metastasis to liver, lung, and bone. We provide in vivo evidence that upregulation of a cell surface serine protease in a primary tumor promotes cancer progression and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.