The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection.
Flap endonucleases (FENs) isolated from archaea are shown to recognize and cleave a structure formed when two overlapping oligonucleotides hybridize to a target DNA strand. The downstream oligonucleotide probe is cleaved, and the precise site of cleavage is dependent on the amount of overlap with the upstream oligonucleotide. We have demonstrated that use of thermostable archaeal FENs allows the reaction to be performed at temperatures that promote probe turnover without the need for temperature cycling. The resulting amplification of the cleavage signal enables the detection of specific DNA targets at sub-attomole levels within complex mixtures. Moreover, we provide evidence that this cleavage is sufficiently specific to enable discrimination of single-base differences and can differentiate homozygotes from heterozygotes in single-copy genes in genomic DNA.
48 Background. Nucleic acid amplification tests (NAATs) are the primary means of 49 identifying acute infections caused by severe acute respiratory syndrome coronavirus 2 50 (SARS-CoV-2). Accurate and fast test results may permit more efficient use of protective and 51 isolation resources and allow for rapid therapeutic interventions. 52 Methods. We evaluated the analytical and clinical performance characteristics of the Xpert ® 53 Xpress SARS-CoV-2 (Xpert) test, a rapid, automated molecular test for SARS-CoV-2. 54 Analytical sensitivity and specificity/interference were assessed with infectious SARS-CoV-2, 55 other infectious coronavirus species including SARS-CoV, and 85 nasopharyngeal swab 56 specimens positive for other respiratory viruses including endemic human coronaviruses 57 (hCoVs). Clinical performance was assessed using 483 remnant upper and lower respiratory 58 specimens previously analyzed by standard of care (SOC) NAATs. 59 Results. The limit of detection of the Xpert test was 0.01 plaque forming units (PFU)/mL. 60 Other hCoVs, including Middle East Respiratory Syndrome coronavirus, were not detected by 61 the Xpert test. SARS-CoV, a closely related species in the Sarbecovirus subgenus, was 62 detected by a broad-range target (E) but was distinguished from SARS-CoV-2 (SARS-CoV-2-63 specific N2 target). Compared to SOC NAATs, the positive agreement of the Xpert test was 64 219/220 (99.5%) and the negative agreement was 250/261 (95.8%). A third tie-breaker 65 NAAT resolved all but three of the discordant results in favor the Xpert test. 66 Conclusions. The Xpert test provided sensitive and accurate detection of SARS-CoV-2 in a 67 variety of upper and lower respiratory tract specimens. The high sensitivity and fast time to 68 results of approximately 45 minutes may impact patient management. 69 70 Laboratory diagnosis of infections caused by severe acute respiratory syndrome coronavirus 2 72 (SARS-CoV-2) is usually accomplished by performing nucleic acid amplification tests 73 (NAATs) on respiratory tract specimens. An antibody response is often not detected in the 74 first week to ten days of symptoms and antibody testing is therefore generally unhelpful for 75 acute diagnosis(1-3), with virus isolation in culture presenting significant biosafety risks. 76 Upper respiratory tract (URT) specimens such as nasopharyngeal swabs (NPS) and 77 oropharyngeal swabs (OPS) generally have high SARS-CoV-2 viral loads upon symptom 78 onset.(2, 4-6) URT specimens may also have detectable RNA during the pre-symptomatic 79 period(7), and pediatric patients who remain asymptomatic through the entire course of 80 on June 9, 2020 by guest http://jcm.asm.org/ Downloaded from 4 infection can persistently shed RNA in URT specimens for two weeks or longer.(4, 8) 81 Importantly, NPS may have higher viral loads than OPS.(6) Lower respiratory tract (LRT) 82 specimens including sputum(7, 9) and tracheal aspirates(10) (TA) are often positive for RNA 83 early in disease and remain positive longer than URT sources.(5) 84 NAATs are...
The invasive signal amplification reaction has been previously developed for quantitative detection of nucleic acids and discrimination of single-nucleotide polymorphisms. Here we describe a method that couples two invasive reactions into a serial isothermal homogeneous assay using fluorescence resonance energy transfer detection. The serial version of the assay generates more than 10 7 reporter molecules for each molecule of target DNA in a 4-h reaction; this sensitivity, coupled with the exquisite specificity of the reaction, is sufficient for direct detection of less than 1,000 target molecules with no prior target amplification. Here we present a kinetic analysis of the parameters affecting signal and background generation in the serial invasive signal amplification reaction and describe a simple kinetic model of the assay. We demonstrate the ability of the assay to detect as few as 600 copies of the methylene tetrahydrofolate reductase gene in samples of human genomic DNA. We also demonstrate the ability of the assay to discriminate single base differences in this gene by using 20 ng of human genomic DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.