Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small (Ϸ22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumorderived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.biomarker ͉ miR-141 ͉ plasma ͉ serum ͉ prostate cancer T he development of minimally invasive tests for the detection and monitoring of common epithelial malignancies could greatly reduce the worldwide health burden of cancer (1). Although conventional strategies for blood-based biomarker discovery (e.g., using proteomic technologies) have shown promise, the development of clinically validated cancer detection markers remains an unmet challenge for many common human cancers (2). New approaches that can complement and improve on current strategies for cancer detection are urgently needed.MicroRNAs (miRNAs) are small (typically Ϸ22 nt in size) regulatory RNA molecules that function to modulate the activity of specific mRNA targets and play important roles in a wide range of physiologic and pathologic processes (3, 4). We hypothesized that miRNAs could be an ideal class of blood-based biomarkers for cancer detection because: (i) miRNA expression is frequently dysregulated in cancer (5, 6), (ii) expression patterns of miRNAs in human cancer appear to be tissue-specific (7), and (iii) miRNAs have unusually high stability in formalin-fixed tissues (8-10). This third point led us to speculate that miRNAs may have exceptional stability in plasma and serum as well. We show here that miRNAs are in fact present in clinical samples of plasma and serum in a remarkably stable form. Furthermore, we establish proof-ofprinciple for blood-based miRNA cancer detection by using both a xenograft model system and clinical serum specimens from patients with prostate cancer. Our results lay the foundation for the development of miRNAs as a novel class of blood-based cancer biomarkers and raise provocative questions regarding the mechanism of stability and potential biological function of circulating miRNAs. Results Identification and Molecular Cloning of Endogenous miRNAs fromHuman Plasma. Prior reports have suggested that RNA from human plasma (the noncellular component of blood remaining after removing cells by centrifugation) is largely of low molecular weight (11). W...
Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.
Suppression of androgen production and function provides palliation but not cure in men with prostate cancer (PCa
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.