T lymphocyte activation and increased cytokine levels have been described in retrospective studies of children presenting with dengue hemorrhagic fever (DHF). Serial plasma samples obtained in a prospective study of Thai children presenting with <72 h of fever were studied. Plasma levels of 80-kDa soluble tumor necrosis factor receptors (sTNFRs) were higher in children who developed DHF than in those with dengue fever (DF) or other nondengue febrile illnesses (OFIs) and were correlated with the degree of subsequent plasma leakage. Soluble CD8 and soluble interleukin-2 receptor levels were also elevated in children with DHF compared with those with DF. Interferon-gamma and sTNFR 60-kDa levels were higher in children with dengue than in those with OFIs. TNF-alpha was detectable more often in DHF than in DF or OFIs (P<.05). These results support the hypothesis that immune activation contributes to the pathogenesis of DHF. Further studies evaluating the predictive value of sTNFR80 for DHF are warranted.
For the past 50 years, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D 2 receptors. Drug development of non-D 2 compounds, seeking to avoid the limiting side effects of dopamine receptor blockade, has failed to date to yield new medicines for patients. In this work, we report the discovery of SEP-363856 (SEP-856), a novel psychotropic agent with a unique mechanism of action. SEP-856 was discovered in a medicinal chemistry effort utilizing a high throughput, high content, mouse-behavior phenotyping platform, in combination with in vitro screening, aimed at developing non-D 2 (anti-target) compounds that could nevertheless retain efficacy across multiple animal models sensitive to D 2-based pharmacological mechanisms. SEP-856 demonstrated broad efficacy in putative rodent models relating to aspects of schizophrenia, including phencyclidine (PCP)-induced hyperactivity, prepulse inhibition, and PCP-induced deficits in social interaction. In addition to its favorable pharmacokinetic properties, lack of D 2 receptor occupancy, and the absence of catalepsy, SEP-856's broad profile was further highlighted by its robust suppression of rapid eye movement sleep in rats. Although the mechanism of action has not been fully elucidated, in vitro and in vivo pharmacology data as well as slice and in vivo electrophysiology recordings suggest that agonism at both trace amine-associated receptor 1 and 5-HT 1A receptors is integral to its efficacy. Based on the preclinical data and its unique mechanism of action, SEP-856 is a promising new agent for the treatment of schizophrenia and represents a new pharmacological class expected to lack the side effects stemming from blockade of D 2 signaling. SIGNIFICANCE STATEMENT Since the discovery of chlorpromazine in the 1950s, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D 2 receptors, which is associated with substantial side effects and little to no efficacy in treating the negative and cognitive symptoms of schizophrenia. In this study, we describe the discovery and pharmacology of SEP-363856, a novel psychotropic agent that does not exert its antipsychotic-like effects through direct interaction with D 2 receptors. Although the mechanism of action has not been fully elucidated, our data suggest that agonism at both trace amine-associated receptor 1 and 5-HT 1A receptors is integral to its efficacy. Based on its unique profile in preclinical species, SEP-363856 represents a promising candidate for the treatment of schizophrenia and potentially other neuropsychiatric disorders. At the time these studies were conducted, all authors were employees of either Sunovion Pharmaceuticals or PsychoGenics. Some authors are inventors on patents related to the subject matter. 1 N.D. and P.G.J. contributed equally to the work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.