BackgroundImmune monitoring by flow cytometry is a fast and highly informative way of studying the effects of novel therapeutics aimed at reducing transplant rejection or treating autoimmune diseases. The ONE Study consortium has recently initiated a series of clinical trials aimed at using different cell therapies to promote tolerance to renal allografts. To compare the effectiveness of different cell therapies, the consortium developed a robust immune monitoring strategy, including procedures for whole blood (WB) leukocyte subset profiling by flow cytometry.MethodsSix leukocyte profiling panels computing 7- to 9-surface marker antigens for monitoring the major leukocyte subsets as well as characteristics of T cell, B cell, and dendritic cell (DC) subsets were designed. The precision and variability of these panels were estimated. The assay was standardized within eight international laboratories using Flow-Set Pro beads for mean fluorescence intensity target definition and the flow cytometer setup procedure. Standardization was demonstrated by performing inter-site comparisons.ResultsOptimized methods for sample collection, storage, preparation, and analysis were established, including protocols for gating target subsets. WB specimen age testing demonstrated that staining must be performed within 4 hours of sample collection to keep variability low, meaning less than or equal to 10% for the majority of defined leukocyte subsets. Inter-site comparisons between all participating centers testing shipped normal WB revealed good precision, with a variability of 0.05% to 30% between sites. Intra-assay analyses revealed a variability of 0.05% to 20% for the majority of subpopulations. This was dependent on the frequency of the particular subset, with smaller subsets showing higher variability. The intra-assay variability performance defined limits of quantitation (LoQ) for subsets, which will be the basis for assessing statistically significant differences achieved by the different cell therapies.ConclusionsLocal performance and central analysis of the ONE Study flow cytometry panel yields acceptable variability in a standardized assay at multiple international sites. These panels and procedures with WB allow unmanipulated analysis of changes in absolute cell numbers of leukocyte subsets in single- or multicenter clinical trials. Accordingly, we propose the ONE Study panel may be adopted as a standardized method for monitoring patients in clinical trials enrolling transplant patients, particularly trials of novel tolerance promoting therapies, to facilitate fair and meaningful comparisons between trials.
ClinicalTrials.gov; No.: NCT02232750; URL: www.clinicaltrials.gov.
Background: Previous studies of intracellular expression of phospho-epitopes in human leukocytes using flow cytometry have used erythrocyte removal or lysis before fixation. Because many of the phospho-epitopes of interest are part of signaling networks that respond to the environment and turn over rapidly, the interval and manipulations used to eliminate erythrocytes from samples have the potential to introduce artifacts. We report a procedure to fix samples containing red blood cells with formaldehyde and then remove erythrocytes by lysis. Detection of phospho-Thr 202/Tyr 204-p44/42 extracellular-regulated kinase (ERK) after phorbol ester acetate (PMA) stimulation was used as a model to measure phospho-epitopes in leukocyte populations in whole blood. Methods: Normal blood samples were activated with PMA followed by formaldehyde fixation and subsequent treatments with detergents and protein denaturants. The effects of each treatment were monitored by light scatter, selected CD expression intensity, and phosphorylated ERK (pERK) expression. Results: Red cells could be lysed using 0.1% Triton X-100 after brief fixation of whole blood with 2% or 4% formaldehyde. Light scatter improved as a function of formaldehyde concentration and inversely with MeOH concentration. CD3 signal intensity increased when MeOH concentration was reduced. The ratio of pERK immunofluorescence in PMA-stimulated versus nonstimulated (control) samples was highest with high MeOH (90%) and lowest without MeOH treatment. This pattern is consistent with epitope unmask-
Context.— The adoption of digital capture of pathology slides as whole slide images (WSI) for educational and research applications has proven utility. Objective.— To compare pathologists' primary diagnoses derived from WSI versus the standard microscope. Because WSIs differ in format and method of observation compared with the current standard glass slide microscopy, this study is critical to potential clinical adoption of digital pathology. Design.— The study enrolled a total of 2045 cases enriched for more difficult diagnostic categories and represented as 5849 slides were curated and provided for diagnosis by a team of 19 reading pathologists separately as WSI or as glass slides viewed by light microscope. Cases were reviewed by each pathologist in both modalities in randomized order with a minimum 31-day washout between modality reads for each case. Each diagnosis was compared with the original clinical reference diagnosis by an independent central adjudication review. Results.— The overall major discrepancy rates were 3.64% for WSI review and 3.20% for manual slide review diagnosis methods, a difference of 0.44% (95% CI, −0.15 to 1.03). The time to review a case averaged 5.20 minutes for WSI and 4.95 minutes for glass slides. There was no specific subset of diagnostic category that showed higher rates of modality-specific discrepancy, though some categories showed greater discrepancy than others in both modalities. Conclusions.— WSIs are noninferior to traditional glass slides for primary diagnosis in anatomic pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.