Neurodevelopmental models for the pathology of schizophrenia propose both polygenetic and environmental risks, as well as early (pre͞perinatal) and late (usually adolescent) developmental brain abnormalities. With the use of brain mapping algorithms, we detected striking anatomical profiles of accelerated gray matter loss in very early-onset schizophrenia; surprisingly, deficits moved in a dynamic pattern, enveloping increasing amounts of cortex throughout adolescence. Early-onset patients were rescanned prospectively with MRI, at 2-year intervals at three time points, to uncover the dynamics and timing of disease progression during adolescence. The earliest deficits were found in parietal brain regions, supporting visuospatial and associative thinking, where adult deficits are known to be mediated by environmental (nongenetic) factors. Over 5 years, these deficits progressed anteriorly into temporal lobes, engulfing sensorimotor and dorsolateral prefrontal cortices, and frontal eye fields. These emerging patterns correlated with psychotic symptom severity and mirrored the neuromotor, auditory, visual search, and frontal executive impairments in the disease. In temporal regions, gray matter loss was completely absent early in the disease but became pervasive later. Only the latest changes included dorsolateral prefrontal cortex and superior temporal gyri, deficit regions found consistently in adult studies. These emerging dynamic patterns were (i) controlled for medication and IQ effects, (ii) replicated in independent groups of males and females, and (iii) charted in individuals and groups. The resulting mapping strategy reveals a shifting pattern of tissue loss in schizophrenia. Aspects of the anatomy and dynamics of disease are uncovered, in a changing profile that implicates genetic and nongenetic patterns of deficits.
Children with childhood-onset schizophrenia exhibit a pattern of eye-tracking dysfunction similar to that reported for adult patients. Similar abnormalities were seen in the subjects with psychotic disorder not otherwise specified except that they did not exhibit a greater frequency of catch-up saccades. Prospective longitudinal neurobiological and clinical follow-up studies of both groups are currently underway to further validate the distinction between these two disorders. Also, family studies are planned to establish whether eye-tracking dysfunction represents a trait- or state-related phenomenon in subjects with psychotic disorder not otherwise specified.
Background: Social-communication difficulties, a hallmark of ASD, autism spectrum disorder (ASD) are often observed in attention – deficit/ hyperactivity disorder (ADHD), although are not part of its diagnostic criteria. Despite sex differences in the prevalence of ASD and ADHD, research examining how sex differences manifest in social and communication functions in these disorders remains limited, and findings are mixed. This study investigated potential sex differences with age in social adaptive function across these disorders, relative to controls. Method: One hundred fifteen youth with ASD, 172 youth with ADHD, and 63 typically developing controls (age range 7–13 years, 75% males) were recruited from the Province of Ontario Neurodevelopmental Disorder (POND) Network. Social adaptive function was assessed using the Adaptive Behavior Assessment System-Second Edition (ABAS-II). The proportions of adaptive behaviors present in each skill area were analyzed as a binomial outcome using logistic regression, controlling for age, and testing for an age-by-sex interaction. In an exploratory analysis, we examined the impact of controlling for core symptom severity on the sex effect. Results: Significant sex-by-age interactions were seen within ASD in the communication (p = 0.005), leisure (p = 0.003), and social skill areas (p < 0.0001). In all three areas, lower scores (indicating poorer function) were found in females compared to males at older ages despite females performing better at younger ages. There were significant differences in the sex-by-age interactions in the social and leisure domains between those with ASD and typically developing controls, with typically developing females showing better scores at older, compared to younger, ages. There were also significant differences in the sex-by-age interactions between ASD and ADHD on the social and leisure domains, as females with ADHD consistently scored higher on social skills than males across all ages, unlike those with ASD. Sex differences across age in the social domains for ADHD were similar to those in the typically developing group. Conclusion: Sex differences in social and communication skill areas were observed between ASD and ADHD, and typically developing controls, with females with ASD performing worse than males at older ages, despite an earlier advantage. These findings reinforce the need to take a developmental approach to understanding sex differences which may have diagnostic, prognostic, and treatment implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.