A B S T R A C T PurposePanitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials. Patients and MethodsKRAS mutations were detected using polymerase chain reaction on DNA from tumor sections collected in a phase III mCRC trial comparing panitumumab monotherapy to best supportive care (BSC). We tested whether the effect of panitumumab on progression-free survival (PFS) differed by KRAS status. ResultsKRAS status was ascertained in 427 (92%) of 463 patients (208 panitumumab, 219 BSC). KRAS mutations were found in 43% of patients. The treatment effect on PFS in the wild-type (WT) KRAS group (hazard ratio [HR], 0.45; 95% CI: 0.34 to 0.59) was significantly greater (P Ͻ .0001) than in the mutant group (HR, 0.99; 95% CI, 0.73 to 1.36). Median PFS in the WT KRAS group was 12.3 weeks for panitumumab and 7.3 weeks for BSC. Response rates to panitumumab were 17% and 0%, for the WT and mutant groups, respectively. WT KRAS patients had longer overall survival (HR, 0.67; 95% CI, 0.55 to 0.82; treatment arms combined). Consistent with longer exposure, more grade III treatment-related toxicities occurred in the WT KRAS group. No significant differences in toxicity were observed between the WT KRAS group and the overall population. ConclusionPanitumumab monotherapy efficacy in mCRC is confined to patients with WT KRAS tumors. KRAS status should be considered in selecting patients with mCRC as candidates for panitumumab monotherapy.
Angiopoietin-2 (Ang2) exhibits broad expression in the remodeling vasculature of human tumors but very limited expression in normal tissues, making it an attractive candidate target for antiangiogenic cancer therapy. To investigate the functional consequences of blocking Ang2 activity, we generated antibodies and peptide-Fc fusion proteins that potently and selectively neutralize the interaction between Ang2 and its receptor, Tie2. Systemic treatment of tumor-bearing mice with these Ang2-blocking agents resulted in tumor stasis, followed by elimination of all measurable tumor in a subset of animals. These effects were accompanied by reduced endothelial cell proliferation, consistent with an antiangiogenic therapeutic mechanism. Anti-Ang2 therapy also prevented VEGF-stimulated neovascularization in a rat corneal model of angiogenesis. These results imply that specific Ang2 inhibition may represent an effective antiangiogenic strategy for treating patients with solid tumors.
Insulin-like growth factors and their principal receptor, IGF-I receptor (IGF-IR), are frequently expressed in human colon cancers and play a role in preventing apoptosis, enhancing cell proliferation, and inducing expression of vascular endothelial growth factor (VEGF). The role of IGF-IR in regulating angiogenesis and metastases of human colon cancer has not been elucidated. To determine the in vitro and in vivo effects of IGF-IR in human colon cancer growth and angiogenesis, human KM12L4 colon cancer cells were transfected with a truncated dominant-negative form of IGF-IR (IGF-IR dom-neg). IGF-IR dom-neg-transfected cells demonstrated markedly decreased constitutive expression of VEGF mRNA and protein. Subcutaneous injections of IGF-IR dom-neg-transfected cells in nude mice led to significantly decreased tumor growth (p Ͻ 0.05) that was associated with decreased tumor cell proliferation, VEGF expression, and vessel count and with increased tumor cell apoptosis (p Ͻ 0.05 for all parameters compared with controls). In addition, pericyte coverage of endothelial cells was significantly decreased in tumors from IGF-IR dom-neg-transfected cells. Following this observation, we demonstrated in vitro that vascular smooth muscle cells migrated significantly less in conditioned medium derived from IGF-IR dom-neg-transfected cells compared with medium from control cells. After splenic injections, IGF-IR dom-neg transfectants failed to produce liver metastases, in contrast to parental cells and mock transfectants (p Ͻ 0.05). In addition, IGF-IR dom-neg-transfected cells failed to form liver tumors after direct injection into the liver. These studies demonstrate that the IGF-IR plays an important role in multiple mechanisms that mediate the growth, angiogenesis, and metastasis of human colon cancer. IGF-IR is a valid target for the therapy of human colon cancer.
c-Met is a well-characterized receptor tyrosine kinase for hepatocyte growth factor (HGF). Compelling evidence from studies in human tumors and both cellular and animal tumor models indicates that signaling through the HGF/c-Met pathway mediates a plethora of normal cellular activities, including proliferation, survival, migration, and invasion, that are at the root of cancer cell dysregulation, tumorigenesis, and tumor metastasis. Inhibiting HGF-mediated signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of human tumors. Toward this goal, we generated and characterized five different fully human monoclonal antibodies that bound to and neutralized human HGF. Antibodies with subnanomolar affinities for HGF blocked binding of human HGF to c-Met and inhibited HGF-mediated c-Met phosphorylation, cell proliferation, survival, and invasion. Using a series of human-mouse chimeric HGF proteins, we showed that the neutralizing antibodies bind to a unique epitope in the B-chain of human HGF. Importantly, these antibodies inhibited HGF-dependent autocrine-driven tumor growth and caused significant regression of established U-87 MG tumor xenografts. Treatment with anti-HGF antibody rapidly inhibited tumor cell proliferation and significantly increased the proportion of apoptotic U-87 MG tumor cells in vivo. These results suggest that an antibody to an epitope in the B-chain of HGF has potential as a novel therapeutic agent for treating patients with HGF-dependent tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.