Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.
Relational coordination across health care providers is associated with improved quality of care, reduced postoperative pain, and decreased lengths of hospital stay for patients undergoing total joint arthroplasty. These findings support the design of formal practices to strengthen communication and relationships among key caregivers on surgical units.
SummaryBackgroundPatients with dilated cardiomyopathy whose symptoms and cardiac function have recovered often ask whether their medications can be stopped. The safety of withdrawing treatment in this situation is unknown.MethodsWe did an open-label, pilot, randomised trial to examine the effect of phased withdrawal of heart failure medications in patients with previous dilated cardiomyopathy who were now asymptomatic, whose left ventricular ejection fraction (LVEF) had improved from less than 40% to 50% or greater, whose left ventricular end-diastolic volume (LVEDV) had normalised, and who had an N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) concentration less than 250 ng/L. Patients were recruited from a network of hospitals in the UK, assessed at one centre (Royal Brompton and Harefield NHS Foundation Trust, London, UK), and randomly assigned (1:1) to phased withdrawal or continuation of treatment. After 6 months, patients in the continued treatment group had treatment withdrawn by the same method. The primary endpoint was a relapse of dilated cardiomyopathy within 6 months, defined by a reduction in LVEF of more than 10% and to less than 50%, an increase in LVEDV by more than 10% and to higher than the normal range, a two-fold rise in NT-pro-BNP concentration and to more than 400 ng/L, or clinical evidence of heart failure, at which point treatments were re-established. The primary analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02859311.FindingsBetween April 21, 2016, and Aug 22, 2017, 51 patients were enrolled. 25 were randomly assigned to the treatment withdrawal group and 26 to continue treatment. Over the first 6 months, 11 (44%) patients randomly assigned to treatment withdrawal met the primary endpoint of relapse compared with none of those assigned to continue treatment (Kaplan-Meier estimate of event rate 45·7% [95% CI 28·5–67·2]; p=0·0001). After 6 months, 25 (96%) of 26 patients assigned initially to continue treatment attempted its withdrawal. During the following 6 months, nine patients met the primary endpoint of relapse (Kaplan-Meier estimate of event rate 36·0% [95% CI 20·6–57·8]). No deaths were reported in either group and three serious adverse events were reported in the treatment withdrawal group: hospital admissions for non-cardiac chest pain, sepsis, and an elective procedure.InterpretationMany patients deemed to have recovered from dilated cardiomyopathy will relapse following treatment withdrawal. Until robust predictors of relapse are defined, treatment should continue indefinitely.FundingBritish Heart Foundation, Alexander Jansons Foundation, Royal Brompton Hospital and Imperial College London, Imperial College Biomedical Research Centre, Wellcome Trust, and Rosetrees Trust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.