Ulnar-mammary syndrome (UMS) is a pleiotropic disorder affecting limb, apocrine-gland, tooth, hair, and genital development. Mutations that disrupt the DNA-binding domain of the T-box gene, TBX3, have been demonstrated to cause UMS. However, the 3' terminus of the open reading frame (ORF) of TBX3 was not identified, and mutations were detected in only two families with UMS. Furthermore, no substantial homology outside the T-box was found among TBX3 and its orthologues. The subsequent cloning of new TBX3 cDNAs allowed us to complete the characterization of TBX3 and to identify alternatively transcribed TBX3 transcripts, including one that interrupts the T-box. The complete ORF of TBX3 is predicted to encode a 723-residue protein, of which 255 amino acids are encoded by newly identified exons. Comparison of other T-box genes to TBX3 indicates regions of substantial homology outside the DNA-binding domain. Novel mutations have been found in all of eight newly reported families with UMS, including five mutations downstream of the region encoding the T-box. This suggests that a domain(s) outside the T-box is highly conserved and important for the function of TBX3. We found no obvious phenotypic differences between those who have missense mutations and those who have deletions or frameshifts.
Epidermolysis bullosa with pyloric atresia (EB-PA), an autosomal recessive genodermatosis, manifests with neonatal cutaneous blistering associated with congenital pyloric atresia. The disease is frequently lethal, but nonlethal cases have also been reported. Expression of the alpha6 beta4 integrin is altered at the dermal-epidermal basement-membrane zone; recently, mutations in the corresponding genes (ITGA6 and ITGB4) have been disclosed in a limited number of patients, premature termination codons in both alleles being characteristic of lethal variants. In this study, we have examined the molecular basis of EB-PA in five families, two of them with lethal and three of them with nonlethal variants of the disease. Mutation analysis disclosed novel lesions in both ITGB4 alleles of each proband. One of the patients with lethal EB-PA was a compound heterozygote for premature termination-codon mutations (C738X/4791delCA), whereas the other patient with a lethal variant was homozygous for a missense mutation involving a cysteine residue (C61Y). The three nonlethal cases had missense mutations in both alleles (C562R/C562R, R1281W/R252C, and R1281W/R1281W). Immunofluorescence staining of skin in two of the nonlethal patients and in one of the lethal cases was positive, yet attenuated, for alpha6 and beta4 integrins. These results confirm that ITGB4 mutations underlie EB-PA and show that missense mutations may lead to nonlethal phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.