We have designed and synthesised two new carbazole based self-assembled molecules as hole-selective layers (HSLs) in p–i–n perovskite solar cells achieving high efficiency and high stability.
Understanding the oxygen evolution reaction (OER) activity and stability of the NiFe-based materials is important for achieving low-cost and highly efficient electrocatalysts for practical water splitting. Here, we report the roles of Ni and Fe on the OER activity and stability of metallic NiFe and pure Ni thin films in alkaline media. Our results support that Ni(OH) 2 /NiOOH does not contribute to the OER directly, but it serves as an ideal host for Fe incorporation, which is essential for obtaining high OER activity. Furthermore, the availability of Fe in the electrolyte is found to be important and necessary for both NiFe and pure Ni thin films to maintain an enhanced OER performance, while the presence of Ni is detrimental to the OER kinetics. The impacts of Fe and Ni species present in KOH on the OER activity are consistent with the dissolution/re-deposition mechanism we proposed. Stability studies show that the OER activity will degrade under prolonged continuous operation. Satisfactory stability can, however, be achieved with intermittent OER operation, in which the electrocatalyst is cycled between degraded and recovered states. Accordingly, two important ranges, that is, the recovery range and the degradation range, are proposed. Compared to the intermittent OER operation, prolonged continuous OER operation (i.e., in the degradation range) generates a higher NiOOH content in the electrocatalyst, which is likely related to the OER deactivation. If the electrode works in the recovery range for a certain period, that is, at a sufficiently low reduction potential, where Ni 3+ is reduced to Ni 2+ , the OER activity can be maintained and even improved if Fe is also present in the electrolyte.
Latest record efficiencies of Cu(In,Ga)Se2 (CIGSe) solar cells were achieved by means of a rubidium fluoride (RbF) post-deposition treatment (PDT). To understand the effect of the RbF-PDT on the surface chemistry of CIGSe and its interaction with sodium that is generally present in the CIGSe absorber, we performed an X-ray photoelectron spectroscopy (XPS) study on CIGSe thin films as-deposited by a three-stage co-evaporation process and after the consecutive RbF-PDT. The sample transfer from the deposition to the XPS analysis chamber was performed via an ultra-high vacuum transfer system. This allows to minimize air exposure, avoiding oxide formation on the CIGSe surface, especially for alkali-treated absorbers. Beside an expected reduction of Cu-and Ga-content at the surface of RbF-treated CIGSe films, we find that Rb penetrates the CIGSe and, contrary to fluorine, it is not completely removed by subsequent ammonia etching. The remaining Rb contribution at 110.0 eV binding energy, which appears after the RbF-PDT is similar to the one detected on a coevaporated RbInSe2 reference sample and together with a new Se 3d contribution may hence belong to an Rb-In-Se secondary phase on the CIGSe surface. In addition, Na is driven towards the surface of the CIGSe absorber as a direct result of the RbF-PDT. This proves the ion-exchange mechanism in the absence of moisture and air/oxygen between heavy Rb atoms incorporated via PDT and lighter Na atoms supplied by the glass substrate. A remaining XPS signal of Na 1s is observed after etching the vacuum transferred RbF-CIGSe sample, indicating that Rb and/or F are not as much a driving force for Na as oxygen usually is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.