In the last decades, a group of viruses has received great attention due to its relationship with cancer development and its wide distribution throughout the vertebrates: the papillomaviruses. In this article, we aim to review some of the most relevant reports concerning the use of bovines as an experimental model for studies related to papillomaviruses. Moreover, the obtained data contributes to the development of strategies against the clinical consequences of bovine papillomaviruses (BPV) that have led to drastic hazards to the herds. To overcome the problem, the vaccines that we have been developing involve recombinant DNA technology, aiming at prophylactic and therapeutic procedures. It is important to point out that these strategies can be used as models for innovative procedures against HPV, as this virus is the main causal agent of cervical cancer, the second most fatal cancer in women.
ABSTRACT. The bovine papillomavirus (BPV) causes papillomas that regress spontaneously, but can also progress to malignancy. This study evaluated the role of BPV in oncogenesis. Twenty-four samples from uninfected calves and the papillomas of BPV infected cattle were subjected to molecular diagnosis, as well as histopathological and immunohistochemical analyses. The comet assay (CA) was used to evaluate the clastogenic potential of BPV. The results confirmed the presence of BPV-2, 3, 5, and 9 in infected samples. Histopathological analysis revealed acanthosis, koilocytosis, hypergranulosis, hyperkeratosis, and transformed fibroblasts. E7 and L1 BPV proteins were detected in the epithelium, as well as in the connective tissues, indicating productive infection at different sites. CA 12943 Genetics and histopathological aspects of BPV ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 14 (4): 12942-12954 (2015) results showed that BPV-2, 5, and 9 exhibit the same level of clastogenicity. These findings support the oncogenic action of BPV in establishing a favorable microenvironment for oncogenesis.
Bovine papillomavirus (BPV) is considered a useful model to study HPV oncogenic process. BPV interacts with the host chromatin, resulting in DNA damage, which is attributed to E5, E6, and E7 viral oncoproteins activity. However, the oncogenic mechanisms of BPV E6 oncoprotein per se remain unknown. This study aimed to evaluate the mutagenic potential of Bos taurus papillomavirus type 1 (BPV-1) E6 recombinant oncoprotein by the cytokinesis-block micronucleus assay (CBMNA) and comet assay (CA). Peripheral blood samples of five calves were collected. Samples were subjected to molecular diagnosis, which did not reveal presence of BPV sequences. Samples were treated with 1 μg/mL of BPV-1 E6 oncoprotein and 50 μg/mL of cyclophosphamide (positive control). Negative controls were not submitted to any treatment. The samples were submitted to the CBMNA and CA. The results showed that BPV E6 oncoprotein induces clastogenesis per se, which is indicative of genomic instability. These results allowed better understanding the mechanism of cancer promotion associated with the BPV E6 oncoprotein and revealed that this oncoprotein can induce carcinogenesis per se. E6 recombinant oncoprotein has been suggested as a possible vaccine candidate. Results pointed out that BPV E6 recombinant oncoprotein modifications are required to use it as vaccine.
Bovine papillomavirus (BPV) is the etiological agent of bovine papillomatosis (BP), infectious disease, characterized by the presence of multiples papillomas that can regress spontaneously or progress to malignances. Although recognized as mutagen, BPV action following cancer initiation remains few explored, since studies about cancer progression and metastasis are based on cell cultures. The lack of attention to in vitro models is a reflection of the papillomavirus replication paradigm, which is dependent of epithelium cell differentiation. Since 2008, we have explored the potential of cell lines derived from BPV-infected neoplasms as model to study the oncogenic process. In this study, we described BPV productive infection in cell lines derived from cutaneous papilloma, fibropapilloma and esophageal carcinoma (EC) in which BPV DNA sequences were previously detected by PCR. Considering that the immunodetection of L1 capsid protein is the main evidence of productive infection, we analyzed the expression of this protein by immunofluorescence and flow cytometry. Results showed the immunodetection of L1 protein in cell lines derived from cutaneous papilloma, fibropapilloma and EC, but not in cells derived from BPV-free normal skin. We also observed the presence of spherical and electron-dense particles, with 41.02-61.94 nm diameter in cytoplasmic vesicles of cells in the sixth passage of cutaneous papilloma, fibropapilloma and EC, being compatible with the expected BPV morphology. Cells derived from BPV-free normal skin, in turn, showed membranous particles up to 75.00 nm not compatible with BPV morphology. These results suggest the BPV productive infection in cells lines derived from BPV-infected neoplasm, reinforcing that these cells are useful models to study the viral biology and pathogenesis.Correspondence to: Rita de Cassia Stocco, Genetics Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil, Tel: +55 11 2627-9701; e-mail: rita. stocco@butantan.gov.br Highlights• Bovine papillomavirus (BPV) cause multiples papillomas that can regress or progress to malignances;• BPV action following cancer initiation remains few explored;• Identification of BPV L1 capsid protein and virion-like particles in cytoplasmic vesicles of cell lines derived from BPVinfected cutaneous papilloma, fibropapilloma and esophageal carcinoma;• Cell lines derived from BPV-infected neoplasm can be considered useful model to study the viral biology and pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.