This study provides a framework of the factors predicting the intention of eating an insect-based product. As part of the study, a seminar was carried out to explore how the provision of information about ecological, health, and gastronomic aspects of entomophagy would modify consumer beliefs regarding insects as food. Before and after the informative seminar, two questionnaires about sociodemographic attributes and beliefs about the consumption of insects as food were given. Participants were then asked to carry out a sensory evaluation of two identical bread samples, but one was claimed to be supplemented with insect powder. Results showed that perceived behavioral control is the main predictor of the intention, followed by neophobia and personal insect food rejection. The disgust factor significantly decreased after the participants attended the informative seminar. Sensory scores highlighted that participants gave “insect-labelled” samples higher scores for flavor, texture, and overall liking, nevertheless, participants indicated that they were less likely to use the “insect-labelled” bread in the future. Our findings provide a better understanding of insect food rejection behavior and help to predict the willingness to try insect-based products based on some important individual traits and information.
Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Brucellosis is a major public health problem still prevalent as a neglected endemic zoonosis requiring proactive attention in many communities worldwide. The present study involved analysis of Brucella field strains submitted for typing to the Italian National Reference Laboratory for Brucellosis from 2007 to 2015. Strains were identified at the species and biovar levels by classic and molecular techniques according to the World Organisation for Animal Health Manual. In total, 5,784 strains were typed: 3,089 Brucella abortus (53.4%), 2,497 B. melitensis (43.2%), 10 B. ovis (0.2%), 181 B. suis (3.1%), and 7 B. ceti (0.1%). The 2,981 strains from cattle were typed as B. abortus biovars 1, 3, and 6 (90.1%) and B. melitensis biovar 3 (9.9%). The 318 strains from water buffalo were typed as B. abortus biovars 1, 3 (95.9%) and B. melitensis biovar 3 (4.1%). The 2,279 strains from sheep and goats were typed as B. abortus biovars 1 and 3 (4.3%); B. melitensis biovars 1, 3, (95.3%); and B. ovis (0.4%). The 173 strains from wild boar were typed as B. suis biovar 2 (98.3%) and B. melitensis biovar 3 (1.7%). The 11 strains from pigs were typed as B. suis biovar 2. The 13 strains from humans were typed as B. melitensis biovar 3. The two strains from horses were typed as B. abortus biovar 1, while the seven strains from dolphins were typed as B. ceti. This additional knowledge on the epidemiology of brucellosis in Italy may be useful to formulate policies and strategies for the control and eradication of the disease in animal populations. The animal species affected, biovars typed, geographical origins, and spatial distributions of isolates are herein analyzed and discussed.
Campylobacter species are common foodborne pathogens associated with cases of human gastroenteritis worldwide. A detailed understanding of the prevalence, contamination levels and molecular characteristics of Campylobacter spp. in cattle and chicken, which are likely the most important sources of human contamination, is imperative. A collection of 1243 poultry meat samples (665 chicken breasts and 578 chicken thighs) and 1203 bovine meat samples (689 hamburgers and 514 knife-cut meat preparations) were collected at retail outlets, in randomly selected supermarkets located in different Italian regions during one year. Of these samples, 17.38% of the poultry meat and 0.58% of the bovine meat samples tested positive for Campylobacter, of which 131 were Campylobacter jejuni (57.96%) and 95 were Campylobacter coli (42.03%). Campylobacter isolates were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and Campylobacter transmission route to humans. All isolates were molecularly characterized by pulse field gel electrophoresis (PFGE), and further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. Antibiotic resistance was also investigate. The highest levels of resistance among chicken strains were observed for ciprofloxacin (88.25%), nalidixic acid (81.45%) and tetracycline (75.6%). PFGE analysis revealed 73 pulsotypes for C. jejuni and 54 pulsotypes for C. coli, demonstrating the existance of different and specific clones circulating in Italy. MLST of C.jejuni isolates mainly clustered in the CC353, CC354, CC21, CC206 and CC443; while C.coli isolates clustered only in CC828. The most common flaA alleles were 287 for C. jejuni and 66 for C. coli. Our study confirms that poultry meat is the main source of Campylobacteriosis, whereas red meat had a low level of contamination suggesting a minor role in transmission. The high presence of Campylobacter in retail chicken meat, paired with its increased resistance to antimicrobials with several multidrug resistance profiles detected, is alarming and represents a persistent threat to public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.