Recent evidence suggests that besides its action on the central nervous system, leptin can modulate vascular tone through local mechanisms involving nitric oxide (NO) release. In this study, using a fluorescent probe for direct determination of NO, we demonstrated both in endothelial cells and in vessels that leptin is able to stimulate NO release. The effect of leptin on NO is abolished by erbstatin A, a Ca 2؉ -independent tyrosine kinase inhibitor, whereas it is not influenced by calcium removal or by other protein phosphorylation inhibitors, such as genistein (an ATP-dependent tyrosine-kinase inhibitor) or wortmannin and LY294002 (two different phosphatidylinositol [PI] 3-kinase inhibitors). Accordingly, leptin-induced vasorelaxation in aortic rings was abolished only by erbstatin A. Furthermore, immunoblotting studies revealed that leptin evokes Akt phosphorylation, with a comparable time course in both endothelial cells and vessels. Also in this experimental system, the effect of leptin was abolished by erbstatin A and not by other inhibitors. Finally, a considerable increase in endothelial NO synthase (eNOS) phosphorylation in Ser 1177 was found when vessels were treated with leptin. In conclusion, leptin induces NO production by activating a PI 3-kinase-independent Akt-eNOS phosphorylation pathway. Diabetes 51: 168 -173, 2002
Cardiac hypertrophy is an adaptive response to a variety of mechanical and hormonal stimuli, and represents an early event in the clinical course leading to heart failure. By gene inactivation, we demonstrate here a crucial role of melusin, a muscle-specific protein that interacts with the integrin beta1 cytoplasmic domain, in the hypertrophic response to mechanical overload. Melusin-null mice showed normal cardiac structure and function in physiological conditions, but when subjected to pressure overload--a condition that induces a hypertrophic response in wild-type controls--they developed an abnormal cardiac remodeling that evolved into dilated cardiomyopathy and contractile dysfunction. In contrast, the hypertrophic response was identical in wild-type and melusin-null mice after chronic administration of angiotensin II or phenylephrine at doses that do not increase blood pressure--that is, in the absence of cardiac biomechanical stress. Analysis of intracellular signaling events induced by pressure overload indicated that phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) was specifically blunted in melusin-null hearts. Thus, melusin prevents cardiac dilation during chronic pressure overload by specifically sensing mechanical stress.
Hypertension affects nearly 20% of the population in Western countries and strongly increases the risk for cardiovascular diseases. In the pathogenesis of hypertension, the vasoactive peptide of the renin-angiotensin system, angiotensin II and its G protein–coupled receptors (GPCRs), play a crucial role by eliciting reactive oxygen species (ROS) and mediating vessel contractility. Here we show that mice lacking the GPCR-activated phosphoinositide 3-kinase (PI3K)γ are protected from hypertension that is induced by administration of angiotensin II in vivo. PI3Kγ was found to play a role in angiotensin II–evoked smooth muscle contraction in two crucial, distinct signaling pathways. In response to angiotensin II, PI3Kγ was required for the activation of Rac and the subsequent triggering of ROS production. Conversely, PI3Kγ was necessary to activate protein kinase B/Akt, which, in turn, enhanced L-type Ca2+ channel–mediated extracellular Ca2+ entry. These data indicate that PI3Kγ is a key transducer of the intracellular signals that are evoked by angiotensin II and suggest that blocking PI3Kγ function might be exploited to improve therapeutic intervention on hypertension.
Ras proteins are highly related GTPases that have key roles in regulating growth, differentiation and tumorigenesis. Genetargeting experiments have shown that, out of the three mammalian ras genes, only K-ras is essential for normal mouse embryogenesis, and that mice deprived of H-ras and/or N-ras show no major phenotype. We generated mice (HrasKI) in which the K-ras gene had been modified to encode H-Ras protein. HrasKI mice produce undetectable amounts of K-Ras but-in contrast to mice homozygous for a null K-ras allele-they are born at the expected mendelian frequency, indicating that H-Ras can be substituted for K-Ras in embryonic development. However, adult HrasKI mice show dilated cardiomyopathy associated with arterial hypertension. Our results show that K-Ras can be replaced by H-Ras in its essential function in embryogenesis, and indicate that K-Ras has a unique role in cardiovascular homeostasis.
Background-The ␣ 1 -adrenergic receptors (␣ 1 -ARs) play a key role in cardiovascular homeostasis. However, the functional role of ␣ 1 -AR subtypes in vivo is still unclear. The aim of this study was to evaluate the cardiovascular influences of ␣ 1b -AR. Methods and Results-In transgenic mice lacking ␣ 1 -AR (KO) and their wild-type controls (WT), we evaluated blood pressure profile and cardiovascular remodeling induced by the chronic administration (18 days via osmotic pumps) of norepinephrine, angiotensin II, and subpressor doses of phenylephrine. Our results indicate that norepinephrine induced an increase in blood pressure levels only in WT mice. In contrast, the hypertensive state induced by angiotensin II was comparable between WT and KO mice. Phenylephrine did not modify blood pressure levels in either WT or KO mice. The cardiac hypertrophy and eutrophic vascular remodeling evoked by norepinephrine was observed only in WT mice, and this effect was independent of the hypertensive state because it was similar to that observed during subpressor phenylephrine infusion. Finally, the cardiac hypertrophy induced by thoracic aortic constriction was comparable between WT and KO mice. Conclusions-Our data demonstrate that the lack of ␣ 1b -AR protects from the chronic increase of arterial blood pressure induced by norepinephrine and concomitantly prevents cardiovascular remodeling evoked by adrenergic activation independently of blood pressure levels. (Circulation. 2002;105:1700-1707.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.