The receptor TLR9, recognizing unmethylated bacterial DNA (CpG), is expressed by B cells and plays a role in the maintenance of serological memory. Little is known about the response of B cells stimulated with CpG alone, without additional cytokines. In this study, we show for the first time the phenotypic modification, changes in gene expression, and functional events downstream to TLR9 stimulation in human B cell subsets. In addition, we demonstrate that upon CpG stimulation, IgM memory B cells differentiate into plasma cells producing IgM Abs directed against the capsular polysaccharides of Streptococcus pneumoniae. This novel finding proves that IgM memory is the B cell compartment responsible for the defense against encapsulated bacteria. We also show that cord blood transitional B cells, corresponding to new bone marrow emigrants, respond to CpG. Upon TLR9 engagement, they de novo express AID and Blimp-1, genes necessary for hypersomatic mutation, class-switch recombination, and plasma cell differentiation and produce Abs with anti-pneumococcal specificity. Transitional B cells, isolated from cord blood, have not been exposed to pneumococcus in vivo. In addition, it is known that Ag binding through the BCR causes apoptotic cell death at this stage of development. Therefore, the ability of transitional B cells to sense bacterial DNA through TLR9 represents a tool to rapidly build up the repertoire of natural Abs necessary for our first-line defense at birth.
Mitochondrial DNA (mtDNA) mutations have been described in almost all types of cancer. However, their exact role and timing of occurrence during tumor development and progression are still a matter of debate. A Vogelstein-like model of progression is well established for endometrial carcinoma (EC), however, mtDNA has been scarcely investigated in these tumors despite the fact that mitochondrial biogenesis increase has been shown to be a hallmark of type I EC. Here, we screened a panel of 23 type I EC tissues and matched typical hyperplasia for mutations in mtDNA and in four oncosupressors/oncogenes, namely PTEN, KRAS, CTNNB1 and TP53. Overall, mtDNA mutations were identified in 69% of cases, while mutational events in nuclear genes occurred in 56% of the cases, indicating that mtDNA mutations may precede the genetic instability of these genes canonically involved in progression from hyperplasia to tumor. Protein expression analysis revealed an increase in mitochondrial biogenesis and activation of oxidative stress response mechanisms in tumor tissues, but not in hyperplasia, in correlation with the occurrence of pathogenic mtDNA mutations. Our results point out an involvement of mtDNA mutations in EC progression and explain the increase in mitochondrial biogenesis of type I EC. Last, since mtDNA mutations occur after hyperplasia, their potential role in contributing to genetic instability may be envisioned.
Agammaglobulinemia is a rare primary immunodeficiency characterized by an early block of B cell development in the bone marrow, resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. So far, mutations in Btk, μ heavy chain, surrogate light chain, Igα, and B cell linker have been found in 85–90% of patients with agammaglobulinemia. We report on the first patient with agammaglobulinemia caused by a homozygous nonsense mutation in Igβ, which is a transmembrane protein that associates with Igα as part of the preBCR complex. Transfection experiments using Drosophila melanogaster S2 Schneider cells showed that the mutant Igβ is no longer able to associate with Igα, and that assembly of the BCR complex on the cell surface is abrogated. The essential role of Igβ for human B cell development was further demonstrated by immunofluorescence analysis of the patient's bone marrow, which showed a complete block of B cell development at the pro-B to preB transition. These results indicate that mutations in Igβ can cause agammaglobulinemia in man.
Homozygous mutations in the gene for fatty acid 2-hydroxylase (FA2H) have been associated in humans with three neurodegenerative disorders: complicated spastic paraplegia (SPG35), leukodystrophy with spastic paraparesis and dystonia, and neurodegeneration with brain iron accumulation. Here, we describe a novel homozygous c.270+3A>T mutation in an Italian consanguineous family. In two affected brothers (age at molecular diagnosis 22y and 15y; age at last follow-up 24y and 17y), altered FA2H function led to a severe phenotype, with clinical features overlapping those of the three FA2H-associated disorders. Both patients showed childhood onset progressive spastic paraparesis, mild pyramidal and cerebellar upper limb signs, severe cognitive impairment, white-matter disease, and cerebellar, brainstem, and spinal cord atrophy. However, absence of dystonia, drowsiness episodes, and a subtle globus pallidus involvement suggested that FA2H mutations result in a clinical spectrum, rather than causing distinct disorders. Although clinical heterogeneity is apparent, larger numbers of patients are needed to establish more accurate genotype-phenotype correlations.Leukodystrophies are a heterogeneous group of hereditary disorders primarily affecting white matter, characterized by hypomyelination ⁄ demyelination or axonal damage. 1,2 Up to 50% of leukodystrophies in childhood are of unknown aetiology, and a multidisciplinary approach is crucial to identify new forms and the underlying defects. 1 Homozygous mutations in the gene for fatty acid 2-hydroxylase (FA2H) have been recently shown to be associated with leukodystrophy with spastic paraparesis and dystonia, 3 complicated spastic paraparesis SPG35, 4 and neurodegeneration with brain iron accumulation. 5 FA2H encodes a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent monooxygenase, which uses free fatty acids to synthesize 2-hydroxy fatty acids. These are incorporated into ceramide, a precursor of galactosylceramide (GalCer). GalCer and its sulphated form, sulphatide, are a major constituent of the myelin sheath. 3 FA2H contains two conserved domains, a cytochrome b 5 -like hemebinding domain that spans residues 15 to 85 and accounts for the redox activity of FA2H (including its ability to hydroxylate fatty acids), and a sterol desaturase domain at residues 210 to 367, which is thought to be the catalytic site. 6 FA2H mutations affect either domain. Here we report two siblings born to first-cousin parents, affected with a complex leukodystrophy, owing to a novel FA2H splicing mutation (Fig. 1). Written consent for publication was obtained from the patients' parents. CASE REPORTThe older brother was 24 years old at the last examination. Psychomotor development was normal up to 7 years of age. He then showed progressive loss of ambulatory skills owing to lower limb spasticity and he was not ambulatory at 8 years of age. Optic atrophy was noted. Mild pyramidal and cerebellar signs to the upper limbs were observed in the next 2 years. He lost handwriting abilities a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.