In people suffering from schizophrenia, major areas of everyday life are impaired, including independent living, productive activities and social relationships. Enhanced understanding of factors that hinder real-life functioning is vital for treatments to translate into more positive outcomes. The goal of the present study was to identify predictors of real-life functioning in people with schizophrenia, and to assess their relative contribution. Based on previous literature and clinical experience, several factors were selected and grouped into three categories: illness-related variables, personal resources and context-related factors. Some of these variables were never investigated before in relationship with real-life functioning. In 921 patients with schizophrenia living in the community, we found that variables relevant to the disease, personal resources and social context explain 53.8% of real-life functioning variance in a structural equation model. Neurocognition exhibited the strongest, though indirect, association with real-life functioning. Positive symptoms and disorganization, as well as avolition, proved to have significant direct and indirect effects, while depression had no significant association and poor emotional expression was only indirectly and weakly related to real-life functioning. Availability of a disability pension and access to social and family incentives also showed a significant direct association with functioning. Social cognition, functional capacity, resilience, internalized stigma and engagement with mental health services served as mediators. The observed complex associations among investigated predictors, mediators and real-life functioning strongly suggest that integrated and personalized programs should be provided as standard treatment to people with schizophrenia.
Improving real‐life functioning is the main goal of the most advanced integrated treatment programs in people with schizophrenia. The Italian Network for Research on Psychoses previously explored, by using network analysis, the interplay among illness‐related variables, personal resources, context‐related factors and real‐life functioning in a large sample of patients with schizophrenia. The same research network has now completed a 4‐year follow‐up of the original sample. In the present study, we used network analysis to test whether the pattern of relationships among all variables investigated at baseline was similar at follow‐up. In addition, we compared the network structure of patients who were classified as recovered at follow‐up versus those who did not recover. Six hundred eighteen subjects recruited at baseline could be assessed in the follow‐up study. The network structure did not change significantly from baseline to follow‐up, and the overall strength of the connections among variables increased slightly, but not significantly. Functional capacity and everyday life skills had a high betweenness and closeness in the network at follow‐up, as they had at baseline, while psychopathological variables remained more peripheral. The network structure and connectivity of non‐recovered patients were similar to those observed in the whole sample, but very different from those in recovered subjects, in which we found few connections only. These data strongly suggest that tightly coupled symptoms/dysfunctions tend to maintain each other's activation, contributing to poor outcome in schizophrenia. Early and integrated treatment plans, targeting variables with high centrality, might prevent the emergence of self‐reinforcing networks of symptoms and dysfunctions in people with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.