Maya Blue pigment, used in pre-Colombian America by the ancient Mayas, is a complex between the clay palygorskite and the indigo dye. The pigment can be manufactured by mixing palygorskite and indigo and heating to T > 120 degrees C. The most quoted hypothesis states that the dye molecules enter the microchannels which permeate the clay structure, thus creating a stable complex. Maya Blue shows a remarkable chemical stability, presumably caused by interactions formed between indigo and clay surfaces. This work aims at studying the nature of these interactions by means of computational and spectroscopic techniques. The encapsulation of indigo inside the clay framework was tested by means of molecular modeling techniques. The calculation of the reaction energies confirmed that the formation of the clay-organic complex can occur only if palygorskite is heated at temperatures well above the water desorption step, when the release of water is entropically favored. H-bonds between the clay framework and the indigo were detected by means of spectroscopic methods. FTIR spectroscopy on outgassed palygorskite and freshly synthesized Maya Blue samples showed that the presence of indigo modifies the spectroscopic features of both structural and zeolitic water, although no clear bands of the dye groups could be observed, presumably due to its very low concentration. The positions and intensities of delta(H2O) and nu(H2O) modes showed that part of the structural water molecules interact via a hydrogen bond with the C=O or N-H groups of indigo. Micro-Raman spectra clearly evidenced the presence of indigo both in original and in freshly synthesized Maya Blue. The nu(C=O) symmetric mode of Maya Blue red-shifts with respect to pure indigo, as the result of the formation of H-bonds with the nearest clay structural water. Ab initio quantum methods were applied on the indigo molecule, both isolated and linked through H-bonds with water, to calculate the magnitude of the expected vibrational shifts. Calculated and experimental vibrational shifts appeared to be in good agreement. The presence of a peak at 17.8 ppm and the shift of the N-H signal in the 1H MAS NMR spectrum of Maya Blue provide evidence of hydrogen bond interactions between indigo and palygorskite in agreement with IR and ab initio methods.
Abstract:The electrochemical behavior of fac- [Mn(pdbpy) (CO)3Br] (pdbpy = 4-phenyl-6-(phenyl-2,6-diol)-2,2'-bipyridine), 1, in acetonitrile under Ar and its catalytic performances for CO2 reduction with added water, 2,2',2''-trifluoroethanol (TFE) and phenol are discussed in detail. Preparative-scale electrolysis experiments, carried out at -1.5 V vs. SCE in CO2-saturated acetonitrile solutions, reveal that the process selectivity is extremely sensitive to the acid strength, providing CO and formate in different faradaic yields. A detailed spectroelectrochemical (IR and UV-Vis) study under Ar and CO2 atmospheres shows that 1 undergoes fast solvolysis; however dimer formation in acetonitrile is suppressed, providing an atypical reduction mechanism in comparison with other reported Mn I catalysts. Spectroscopic evidence of Mn hydride formation supports the existence of different electrocatalytic CO2 reduction pathways. Furthermore, a comparative investigation performed on the new fac-[Mn(ptbpy)(CO)3Br] (ptbpy = 4-phenyl-6-(phenyl-3,4,5-triol)-2,2'-bipyridine) catalyst, 2, bearing a bipyridyl derivative with OH groups in different positions to those in 1, provides complementary information about the role that the local proton source plays during the electrochemical reduction of CO2.
Pressing solid barbituric acid with KBr to prepare samples for IR spectroscopy leads to the formation of an ionic co-crystal, in which the co-former is a classical ionic salt; co-crystal formation is also obtained with the other alkali bromides (LiBr, NaBr, RbBr and CsBr) and with caesium iodide. The simultaneous presence of alkali and halide ions affects the dissolution properties of barbituric acid in water.
A series of four photodissociable Ru polypyridyl complexes of general formula [Ru(bpy)2L2](2+), where bpy = 2,2'-bipyridine and L = 4-aminopyridine (1), pyridine (2), butylamine (3), and gamma-aminobutyric acid (4), was studied by density functional theory (DFT) and time-dependent density functional theory (TDDFT). DFT calculations (B3LYP/LanL2DZ) were able to predict and elucidate singlet and triplet excited-state properties of 1-4 and describe the photodissociation mechanism of one monodentate ligand. All derivatives display a Ru --> bpy metal-to-ligand charge transfer (MLCT) absorption band in the visible spectrum and a corresponding emitting triplet (3)MLCT state (Ru --> bpy). 1-4 have three singlet metal-centered (MC) states 0.4 eV above the major (1)MLCT states. The energy gap between the MC states and lower-energy MLCT states is significantly diminished by intersystem crossing and consequent triplet formation. Relaxed potential energy surface scans along the Ru-L stretching coordinate were performed on singlet and triplet excited states for all derivatives employing DFT and TDDFT. Excited-state evolution along the reaction coordinate allowed identification and characterization of the triplet state responsible for the photodissociation process in 1-4; moreover, calculation showed that no singlet state is able to cause dissociation of monodentate ligands. Two antibonding MC orbitals contribute to the (3)MC state responsible for the release of one of the two monodentate ligands in each complex. Comparison of theoretical triplet excited-state energy diagrams from TDDFT and unrestricted Kohn-Sham data reveals the experimental photodissociation yields as well as other structural and spectroscopic features.
The effect of a local proton source on the activity of a bromotricarbonyl Mn redox catalyst for CO2 reduction has been investigated. The electrochemical behaviour of the novel complex [fac-Mn(dhbpy)(CO)3Br] (dhbpy = 4-phenyl-6-(1,3-dihydroxybenzen-2-yl) 2,2'-bipyridine), containing two acidic OH groups in the proximity of the metal centre, under a CO2 atmosphere showed a sustained catalysis in homogeneous solution even in the absence of Brønsted acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.