What are the faintest distant galaxies we can see with the Hubble Space Telescope (HST) now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a Director's discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive highmagnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters-Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370-have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5σ point-source depths of ∼29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ∼30-33 mag over very small volumes. Spitzer has obtained over 1000 hr of Director's discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μm bands to 5σ point-source depths of ∼26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.
We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolution spectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W.M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z ∼ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ∼ 6 (12.8 Gyr ago) and 100% of the stars forming by z ∼ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe.
We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M V = −6.2, −5.5), metal-poor ( [Fe/H] = −2.4, −2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M , the IMF is best fit by a power-law slope of α = 1.2 +0.4 −0.5 for Hercules and α = 1.3 ± 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter (α = 2.35) IMF at the 5.8σ level, and a Kroupa (α = 2.3 above 0.5 M ) IMF slope at 5.4σ level. We simultaneously fit for the binary fraction, f binary , finding f binary = 0.47 +0.16 −0.14 for Hercules, and 0.47 +0.37 −0.17 for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M , we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.
We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ∼1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.
Large surveys of galaxy clusters with the Hubble and Spitzer Space Telescopes, including CLASH and the Frontier Fields, have demonstrated the power of strong gravitational lensing to efficiently deliver large samples of high-redshift galaxies. We extend this strategy through a wider, shallower survey named RELICS, the Reionization Lensing Cluster Survey. This survey, described here, was designed primarily to deliver the best and brightest high-redshift candidates from the first billion years after the Big Bang. RELICS observed 41 massive galaxy clusters with Hubble and Spitzer at 0.4-1.7µm and 3.0-5.0µm, respectively. We selected 21 clusters based on Planck PSZ2 mass estimates and the other 20 based on observed or inferred lensing strength. Our 188-orbit Hubble Treasury Program obtained the first high-resolution near-infrared images of these clusters to efficiently search for lensed highredshift galaxies. We observed 46 WFC3/IR pointings (∼200 arcmin 2 ) with two orbits divided among four filters (F105W, F125W, F140W, and F160W) and ACS imaging as needed to achieve single-orbit depth in each of three filters (F435W, F606W, and F814W). As previously reported by Salmon et al., we discovered 322 z ∼ 6 − 10 candidates, including the brightest known at z ∼ 6, and the most spatially-resolved distant lensed arc known at z ∼ 10. Spitzer IRAC imaging (945 hours awarded, plus 100 archival) has crucially enabled us to distinguish z ∼ 10 candidates from z ∼ 2 interlopers. For each cluster, two HST observing epochs were staggered by about a month, enabling us to discover 11 supernovae, including 3 lensed supernovae, which we followed up with 20 orbits from our program. We delivered reduced HST images and catalogs of all clusters to the public via MAST and reduced Spitzer images via IRSA. We have also begun delivering lens models of all clusters, to be completed before the JWST GO Cycle 1 call for proposals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.