Background Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in colon cancer during the staging phase in order to improve communication between the radiologist, members of multidisciplinary teams and patients. Materials and methods A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. Results The final SR version was built by including n = 18 items in the “Patient Clinical Data” section, n = 7 items in the “Clinical Evaluation” section, n = 9 items in the “Imaging Protocol” section and n = 29 items in the “Report” section. Overall, 63 items were included in the final version of the SR. Both in the first and second round, all sections received a higher than good rating: a mean value of 4.6 and range 3.6–4.9 in the first round; a mean value of 5.0 and range 4.9–5 in the second round. In the first round, Cronbach’s alpha (Cα) correlation coefficient was a questionable 0.61. In the first round, the overall mean score of the experts and the sum of scores for the structured report were 4.6 (range 1–5) and 1111 (mean value 74.07, STD 4.85), respectively. In the second round, Cronbach’s alpha (Cα) correlation coefficient was an acceptable 0.70. In the second round, the overall mean score of the experts and the sum of score for structured report were 4.9 (range 4–5) and 1108 (mean value 79.14, STD 1.83), respectively. The overall mean score obtained by the experts in the second round was higher than the overall mean score of the first round, with a lower standard deviation value to underline greater agreement among the experts for the structured report reached in this round. Conclusions A wide implementation of SR is of critical importance in order to offer referring physicians and patients optimum quality of service and to provide researchers with the best quality data in the context of big data exploitation of available clinical data. Implementation is a complex procedure, requiring mature technology to successfully address the multiple challenges of user-friendliness, organization and interoperability.
Blockchain usage in healthcare, in radiology, in particular, is at its very early infancy. Only a few research applications have been tested, however, blockchain technology is widely known outside healthcare and widely adopted, especially in Finance, since 2009 at least. Learning by history, radiology is a potential ideal scenario to apply this technology. Blockchain could have the potential to increase radiological data value in both clinical and research settings for the patient digital record, radiological reports, privacy control, quantitative image analysis, cybersecurity, radiomics and artificial intelligence.Up-to-date experiences using blockchain in radiology are still limited, but radiologists should be aware of the emergence of this technology and follow its next developments. We present here the potentials of some applications of blockchain in radiology.
Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports for lymphoma patients during the staging phase to improve communication between radiologists, members of multidisciplinary teams, and patients. A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology (SIRM), was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. The Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. The final SR version was divided into four sections: (a) Patient Clinical Data, (b) Clinical Evaluation, (c) Imaging Protocol, and (d) Report, including n = 13 items in the “Patient Clinical Data” section, n = 8 items in the “Clinical Evaluation” section, n = 9 items in the “Imaging Protocol” section, and n = 32 items in the “Report” section. Overall, 62 items were included in the final version of the SR. A dedicated section of significant images was added as part of the report. In the first Delphi round, all sections received more than a good rating (≥3). The overall mean score of the experts and the sum of score for structured report were 4.4 (range 1–5) and 1524 (mean value of 101.6 and standard deviation of 11.8). The Cα correlation coefficient was 0.89 in the first round. In the second Delphi round, all sections received more than an excellent rating (≥4). The overall mean score of the experts and the sum of scores for structured report were 4.9 (range 3–5) and 1694 (mean value of 112.9 and standard deviation of 4.0). The Cα correlation coefficient was 0.87 in this round. The highest overall means value, highest sum of scores of the panelists, and smallest standard deviation values of the evaluations in this round reflect the increase of the internal consistency and agreement among experts in the second round compared to first round. The accurate statement of imaging data given to referring physicians is critical for patient care; the information contained affects both the decision-making process and the subsequent treatment. The radiology report is the most important source of clinical imaging information. It conveys critical information about the patient’s health and the radiologist’s interpretation of medical findings. It also communicates information to the referring physicians and records this information for future clinical and research use. The present SR was generated based on a multi-round consensus-building Delphi exercise and uses standardized terminology and structures, in order to adhere to diagnostic/therapeutic recommendations and facilitate enrolment in clinical trials, to reduce any ambiguity that may arise from non-conventional language, and to enable better communication between radiologists and clinicians.
Background: Structured reporting (SR) in radiology is becoming necessary and has recently been recognized by major scientific societies. This study aimed to build CT-based structured reports for lung cancer during the staging phase, in order to improve communication between radiologists, members of the multidisciplinary team and patients. Materials and Methods: A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi exercise was used to build the structural report and to assess the level of agreement for all the report sections. The Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to perform a quality analysis according to the average inter-item correlation. Results: The final SR version was built by including 16 items in the “Patient Clinical Data” section, 4 items in the “Clinical Evaluation” section, 8 items in the “Exam Technique” section, 22 items in the “Report” section, and 5 items in the “Conclusion” section. Overall, 55 items were included in the final version of the SR. The overall mean of the scores of the experts and the sum of scores for the structured report were 4.5 (range 1–5) and 631 (mean value 67.54, STD 7.53), respectively, in the first round. The items of the structured report with higher accordance in the first round were primary lesion features, lymph nodes, metastasis and conclusions. The overall mean of the scores of the experts and the sum of scores for staging in the structured report were 4.7 (range 4–5) and 807 (mean value 70.11, STD 4.81), respectively, in the second round. The Cronbach’s alpha (Cα) correlation coefficient was 0.89 in the first round and 0.92 in the second round for staging in the structured report. Conclusions: The wide implementation of SR is critical for providing referring physicians and patients with the best quality of service, and for providing researchers with the best quality of data in the context of the big data exploitation of the available clinical data. Implementation is complex, requiring mature technology to successfully address pending user-friendliness, organizational and interoperability challenges.
BackgroundStructured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in Neuroendocrine Neoplasms during the staging phase in order to improve communication between the radiologist and members of multidisciplinary teams.Materials and MethodsA panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A Modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation.ResultsThe final SR version was built by including n=16 items in the “Patient Clinical Data” section, n=13 items in the “Clinical Evaluation” section, n=8 items in the “Imaging Protocol” section, and n=17 items in the “Report” section. Overall, 54 items were included in the final version of the SR. Both in the first and second round, all sections received more than a good rating: a mean value of 4.7 and range of 4.2-5.0 in the first round and a mean value 4.9 and range of 4.9-5 in the second round. In the first round, the Cα correlation coefficient was a poor 0.57: the overall mean score of the experts and the sum of scores for the structured report were 4.7 (range 1-5) and 728 (mean value 52.00 and standard deviation 2.83), respectively. In the second round, the Cα correlation coefficient was a good 0.82: the overall mean score of the experts and the sum of scores for the structured report were 4.9 (range 4-5) and 760 (mean value 54.29 and standard deviation 1.64), respectively.ConclusionsThe present SR, based on a multi-round consensus-building Delphi exercise following in-depth discussion between expert radiologists in gastro-enteric and oncological imaging, derived from a multidisciplinary agreement between a radiologist, medical oncologist and surgeon in order to obtain the most appropriate communication tool for referring physicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.