Abstract. The ITER Ion Cyclotron Heating and Current Drive system (IC H&CD) is designed to deliver 20MW to a broad range of plasma scenarios between 40 and 55MHz, during very long pulses. It consists of two broadband equatorial port plug antennas, their pre-matching and matching systems, transmission lines, Radio Frequency (RF) Sources and High Voltage Power Supplies. The overall project schedule has been revised and agreed by ITER Council; it re-integrates the second antenna and its power supplies in construction baseline and sets the dates for progressive installation with DT phase planned in 2035. Recent progress on ICRF subsystems is reported, covering design evolution, qualification of test articles and specific R&D results in domestic agencies, suppliers, associated laboratories and IO.
Abstract. The paper reports on latest developments for the ITER Ion Cyclotron Heating and Current Drive system: imminent acceptance tests of a prototype power supply at full power; successful factory acceptance of candidate RF amplifier tubes which will be tested on dedicated facilities; further design integration and experimental validation of transmission line components under 6MW hour-long pulses. The antenna Faraday shield thermal design has been validated above requirements by cyclic high heat flux tests. R&D on ceramic brazing is under way for the RF vacuum windows. The antenna port plug RF design is stable but major evolution of the mechanical design is in preparation to achieve compliance with the load specification, warrant manufacturability and incorporate late interface change requests. The antenna power coupling capability predictions have been strengthened by showing that, if the plasma scrape-off layer turns out to be steep and the edge density low, the reference burning plasma can realistically be displaced to improve the coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.