BackgroundGoat populations that are characterized within the AdaptMap project cover a large part of the worldwide distribution of this species and provide the opportunity to assess their diversity at a global scale. We analysed genome-wide 50 K single nucleotide polymorphism (SNP) data from 144 populations to describe the global patterns of molecular variation, compare them to those observed in other livestock species, and identify the drivers that led to the current distribution of goats.ResultsA high degree of genetic variability exists among the goat populations studied. Our results highlight a strong partitioning of molecular diversity between and within continents. Three major gene pools correspond to goats from Europe, Africa and West Asia. Dissection of sub-structures disclosed regional gene pools, which reflect the main post-domestication migration routes. We also identified several exchanges, mainly in African populations, and which often involve admixed and cosmopolitan breeds. Extensive gene flow has taken place within specific areas (e.g., south Europe, Morocco and Mali-Burkina Faso-Nigeria), whereas elsewhere isolation due to geographical barriers (e.g., seas or mountains) or human management has decreased local gene flows.ConclusionsAfter domestication in the Fertile Crescent in the early Neolithic era (ca. 12,000 YBP), domestic goats that already carried differentiated gene pools spread to Europe, Africa and Asia. The spread of these populations determined the major genomic background of the continental populations, which currently have a more marked subdivision than that observed in other ruminant livestock species. Subsequently, further diversification occurred at the regional level due to geographical and reproductive isolation, which was accompanied by additional migrations and/or importations, the traces of which are still detectable today. The effects of breed formation were clearly detected, particularly in Central and North Europe. Overall, our results highlight a remarkable diversity that occurs at the global scale and is locally partitioned and often affected by introgression from cosmopolitan breeds. These findings support the importance of long-term preservation of goat diversity, and provide a useful framework for investigating adaptive introgression, directing genetic improvement and choosing breeding targets.Electronic supplementary materialThe online version of this article (10.1186/s12711-018-0422-x) contains supplementary material, which is available to authorized users.
BackgroundSince goat was domesticated 10,000 years ago, many factors have contributed to the differentiation of goat breeds and these are classified mainly into two types: (i) adaptation to different breeding systems and/or purposes and (ii) adaptation to different environments. As a result, approximately 600 goat breeds have developed worldwide; they differ considerably from one another in terms of phenotypic characteristics and are adapted to a wide range of climatic conditions. In this work, we analyzed the AdaptMap goat dataset, which is composed of data from more than 3000 animals collected worldwide and genotyped with the CaprineSNP50 BeadChip. These animals were partitioned into groups based on geographical area, production uses, available records on solid coat color and environmental variables including the sampling geographical coordinates, to investigate the role of natural and/or artificial selection in shaping the genome of goat breeds.ResultsSeveral signatures of selection on different chromosomal regions were detected across the different breeds, sub-geographical clusters, phenotypic and climatic groups. These regions contain genes that are involved in important biological processes, such as milk-, meat- or fiber-related production, coat color, glucose pathway, oxidative stress response, size, and circadian clock differences. Our results confirm previous findings in other species on adaptation to extreme environments and human purposes and provide new genes that could explain some of the differences between goat breeds according to their geographical distribution and adaptation to different environments.ConclusionsThese analyses of signatures of selection provide a comprehensive first picture of the global domestication process and adaptation of goat breeds and highlight possible genes that may have contributed to the differentiation of this species worldwide.Electronic supplementary materialThe online version of this article (10.1186/s12711-018-0421-y) contains supplementary material, which is available to authorized users.
This review gives an overview of the mathematical modelling of lactation curves in dairy cattle. Over the last ninety years, the development of this field of study has followed the main requirements of the dairy cattle industry. Non-linear parametric functions have represented the preferred tools for modelling average curves of homogeneous groups of animals, with the main aim of predicting yields for management purposes. The increased availability of records per individual lactations and the genetic evaluation based on test day records has shifted the interest of modellers towards more flexible and general linear functions, as polynomials or splines. Thus the main interest of modelling is no longer the reconstruction of the general pattern of the phenomenon but the fitting of individual deviations from an average curve. Other specific approaches based on the modelling of the correlation structure of test day records within lactation, such as mixed linear models or principal component analysis, have been used to test the statistical significance of fixed effects in dairy experiments or to create new variables expressing main lactation curve traits. The adequacy of a model is not an absolute requisite, because it has to be assessed according to the specific purpose it is used for. Occurrence of extended lactations and of new productive and functional traits to be described and the increase of records coming from automatic milking systems likely will represent some of the future challenges for the mathematical modelling of the lactation curve in dairy cattle
Selection is the major force affecting local levels of genetic variation in species. The availability of dense marker maps offers new opportunities for a detailed understanding of genetic diversity distribution across the animal genome. Over the last 50 years, cattle breeds have been subjected to intense artificial selection. Consequently, regions controlling traits of economic importance are expected to exhibit selection signatures. The fixation index (Fst ) is an estimate of population differentiation, based on genetic polymorphism data, and it is calculated using the relationship between inbreeding and heterozygosity. In the present study, locally weighted scatterplot smoothing (LOWESS) regression and a control chart approach were used to investigate selection signatures in two cattle breeds with different production aptitudes (dairy and beef). Fst was calculated for 42 514 SNP marker loci distributed across the genome in 749 Italian Brown and 364 Piedmontese bulls. The statistical significance of Fst values was assessed using a control chart. The LOWESS technique was efficient in removing noise from the raw data and was able to highlight selection signatures in chromosomes known to harbour genes affecting dairy and beef traits. Examples include the peaks detected for BTA2 in the region where the myostatin gene is located and for BTA6 in the region harbouring the ABCG2 locus. Moreover, several loci not previously reported in cattle studies were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.