GS:SFHS is a family-based genetic epidemiology study with DNA and socio-demographic and clinical data from about 24 000 volunteers across Scotland aged 18-98 years, from February 2006 to March 2011. Biological samples and anonymized data form a resource for research on the genetics of health, disease and quantitative traits of current and projected public health importance. Specific and important features of GS:SFHS include the family-based recruitment, with the intent of obtaining family groups; the breadth and depth of phenotype information, including detailed data on cognitive function, personality traits and mental health; consent and mechanisms for linkage of all data to comprehensive routine health-care records; and 'broad' consent from participants to use their data and samples for a wide range of medical research, including commercial research, and for re-contact for the potential collection of other data or samples, or for participation in related studies and the design and review of the protocol in parallel with in-depth sociological research on (potential) participants and users of the research outcomes. These features were designed to maximize the power of the resource to identify, replicate or control for genetic factors associated with a wide spectrum of illnesses and risk factors, both now and in the future.
Background: Generation Scotland: the Scottish Family Health Study aims to identify genetic variants accounting for variation in levels of quantitative traits underlying the major common complex diseases (such as cardiovascular disease, cognitive decline, mental illness) in Scotland.
Background Vast sample sizes are often essential in the quest to disentangle the complex interplay of the genetic, lifestyle, environmental and social factors that determine the aetiology and progression of chronic diseases. The pooling of information between studies is therefore of central importance to contemporary bioscience. However, there are many technical, ethico-legal and scientific challenges to be overcome if an effective, valid, pooled analysis is to be achieved. Perhaps most critically, any data that are to be analysed in this way must be adequately ‘harmonized’. This implies that the collection and recording of information and data must be done in a manner that is sufficiently similar in the different studies to allow valid synthesis to take place.Methods This conceptual article describes the origins, purpose and scientific foundations of the DataSHaPER (DataSchema and Harmonization Platform for Epidemiological Research; http://www.datashaper.org), which has been created by a multidisciplinary consortium of experts that was pulled together and coordinated by three international organizations: P3G (Public Population Project in Genomics), PHOEBE (Promoting Harmonization of Epidemiological Biobanks in Europe) and CPT (Canadian Partnership for Tomorrow Project).Results The DataSHaPER provides a flexible, structured approach to the harmonization and pooling of information between studies. Its two primary components, the ‘DataSchema’ and ‘Harmonization Platforms’, together support the preparation of effective data-collection protocols and provide a central reference to facilitate harmonization. The DataSHaPER supports both ‘prospective’ and ‘retrospective’ harmonization.Conclusion It is hoped that this article will encourage readers to investigate the project further: the more the research groups and studies are actively involved, the more effective the DataSHaPER programme will ultimately be.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.