Optical belt sorters are a versatile, state-of-the art technology to sort bulk materials that are hard to sort based on only nonvisual properties. In this paper, we propose an extension to current optical belt sorters that involves replacing the line camera with an area camera to observe a wider field of view, allowing us to observe each particle over multiple time steps. By performing multitarget tracking, we are able to improve the prediction of each particle’s movement and thus enhance the performance of the utilized separation mechanism. We show that our approach will allow belt sorters to handle new classes of bulk materials while improving cost efficiency. Furthermore, we lay out additional extensions that are made possible by our new paradigm
Multitarget tracking problems arise in many realworld applications. The performance of the utilized algorithm strongly depends both on how the data association problem is handled and on the suitability of the motion models employed. Especially the motion models can be hard to validate. Previously, we have proposed to use multitarget tracking to improve optical belt sorters. In this paper, we evaluate both the suitability of our model and the tracking and then of our entire system incorporating the image processing component via the use of highly realistic numerical simulations. We first assess the model using noise-free measurements generated by the simulation and then evaluate the entire system by using synthetically generated image data
Optical belt sorters can be used to sort a large variety of bulk materials. By the use of sophisticated algorithms, the performance of the complex machinery can be further improved. Recently, we have proposed an extension to industrial optical belt sorters that involves tracking the individual particles on the belt using an area scan camera. If the estimated behavior of the particles matches the true behavior, the reliability of the separation process can be improved. The approach relies on multitarget tracking using hard association decisions between the tracks and the measurements. In this paper, we propose to include the orientation in the assessment of the compatibility of a track and a measurement. This allows us to achieve more reliable associations, facilitating a higher accuracy of the tracking results.
Sensor-based sorting provides state-of-the-art solutions for sorting cohesive, granular materials. Typically, involved sensors, illumination, implementation of data analysis and other components are designed and chosen according to the sorting task at hand. A common property of conventional systems is the utilization of scanning sensors. However, the usage of area-scan cameras has recently been proposed. When observing objects at multiple time points, the corresponding paths can be reconstructed by using multiobject tracking. This in turn allows to accurately estimate the point in time and position at which any object will reach the separation stage of the optical sorter and hence contributes to decreasing the error in physical separation. In this paper, it is proposed to further exploit motion information for the purpose of material characterization. By deriving suitable features from the motion information, we show that high classification performance is obtained for an exemplary classification task. The approach therefore contributes towards decreasing the detection error of sorting systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.