The CONSORT 2010 statement provides minimum guidelines for reporting randomised trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders), and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret, and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes. This Consensus Statement describes the methods used to identify and evaluate candidate items and gain consensus. In addition, it also provides the CONSORT-AI checklist, which includes the new extension items and their accompanying explanations. Methods The SPIRIT-AI and CONSORT-AI extensions were simultaneously developed for clinical trial protocols and trial reports. An announcement for the SPIRIT-AI and CONSORT-AI initiative was published in October 2019, 35 and the two guidelines were registered as reporting
The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials–Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human–AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.
The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret, and critically appraise the design and risk of bias for a planned clinical trial.
Intracranial aneurysm is a common life-threatening disease. Computed tomography angiography is recommended as the standard diagnosis tool; yet, interpretation can be time-consuming and challenging. We present a specific deep-learning-based model trained on 1,177 digital subtraction angiography verified bone-removal computed tomography angiography cases. The model has good tolerance to image quality and is tested with different manufacturers. Simulated real-world studies are conducted in consecutive internal and external cohorts, in which it achieves an improved patient-level sensitivity and lesion-level sensitivity compared to that of radiologists and expert neurosurgeons. A specific cohort of suspected acute ischemic stroke is employed and it is found that 99.0% predicted-negative cases can be trusted with high confidence, leading to a potential reduction in human workload. A prospective study is warranted to determine whether the algorithm could improve patients’ care in comparison to clinicians’ assessment.
Objectives We sought to investigate the diagnostic performance of coronary CT angiography (cCTA)-derived plaque markers combined with deep machine learning-based fractional flow reserve (CT-FFR) to identify lesion-specific ischemia using invasive FFR as the reference standard. Methods Eighty-four patients (61 ± 10 years, 65% male) who had undergone cCTA followed by invasive FFR were included in this single-center retrospective, IRB-approved, HIPAA-compliant study. Various plaque markers were derived from cCTA using a semi-automatic software prototype and deep machine learning-based CT-FFR. The discriminatory value of plaque markers and CT-FFR to identify lesion-specific ischemia on a per-vessel basis was evaluated using invasive FFR as the reference standard. Results One hundred three lesion-containing vessels were investigated. 32/103 lesions were hemodynamically significant by invasive FFR. In a multivariate analysis (adjusted for Framingham risk score), the following markers showed predictive value for lesion-specific ischemia (odds ratio [OR]): lesion length (OR 1.15, p = 0.037), non-calcified plaque volume (OR 1.02, p = 0.007), napkin-ring sign (OR 5.97, p = 0.014), and CT-FFR (OR 0.81, p < 0.0001). A receiver operating characteristics analysis showed the benefit of identifying plaque markers over cCTA stenosis grading alone, with AUCs increasing from 0.61 with ≥ 50% stenosis to 0.83 with addition of plaque markers to detect lesion-specific ischemia. Further incremental benefit was realized with the addition of CT-FFR (AUC 0.93). Conclusion Coronary CTA-derived plaque markers portend predictive value to identify lesion-specific ischemia when compared to cCTA stenosis grading alone. The addition of CT-FFR to plaque markers shows incremental discriminatory power. Key Points• Coronary CT angiography (cCTA)-derived quantitative plaque markers of atherosclerosis portend high discriminatory power to identify lesion-specific ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.