Tissue factor (TF) pathway inhibitor (TFPI) is a well-characterized activated factor X (FXa)-dependent inhibitor of TF-initiated coagulation produced in two alternatively spliced isoforms, TFPIα and TFPIβ. The TFPIα C terminus has a basic sequence nearly identical to a portion of the factor V (FV) B domain necessary for maintaining FV in an inactive conformation via interaction with an acidic region of the B domain. We demonstrate rapid inhibition of prothrombinase by TFPIα mediated through a high-affinity exosite interaction between the basic region of TFPIα and the FV acidic region, which is retained in FXa-activated FVa and platelet FVa. This inhibitory activity is not mediated by TFPIβ and is lost upon removal of the acidic region of FVa by thrombin. The data identify a previously undescribed, isoform-specific anticoagulant function for TFPIα and are a unique description of physiologically relevant inhibition of prothrombinase. These findings, combined with previous descriptions of differential expression patterns of TFPIα and TFPIβ in platelets and endothelial cells, suggest that the TFPI isoforms may act through distinct mechanisms to inhibit the initial stages of intravascular coagulation, with TFPIβ acting to dampen TF expressed on the surface of vascular cells, whereas TFPIα dampens the initial prothrombinase formed on the activated platelet surface.hemophilia | bleeding | thrombosis
Hemophilia A and B are inherited bleeding disorders characterized by deficiencies in procoagulant factor VIII (FVIII) or factor IX (FIX), respectively. There remains a substantial unmet medical need in hemophilia, especially in patients with inhibitory antibodies against replacement factor therapy, for novel and improved therapeutic agents that can be used prophylactically to provide effective hemostasis. Guided by reports suggesting that co-inheritance of prothrombotic mutations may ameliorate the clinical phenotype in hemophilia, we developed an RNA interference (RNAi) therapeutic (ALN-AT3) targeting antithrombin (AT) as a means to promote hemostasis in hemophilia. When administered subcutaneously, ALN-AT3 showed potent, dose-dependent, and durable reduction of AT levels in wild-type mice, mice with hemophilia A, and nonhuman primates (NHPs). In NHPs, a 50% reduction in AT levels was achieved with weekly dosing at approximately 0.125 mg/kg, and a near-complete reduction in AT levels was achieved with weekly dosing at 1.5 mg/kg. Treatment with ALN-AT3 promoted hemostasis in mouse models of hemophilia and led to improved thrombin generation in an NHP model of hemophilia A with anti-factor VIII inhibitors. This investigational compound is currently in phase 1 clinical testing in subjects with hemophilia A or B.
Activated platelets release their granule content in a concentrated fashion at sites of injury. We examined whether ectopically expressed factor VIII in developing megakaryocytes would be stored in ␣-granules and whether its release from circulating platelets would effectively ameliorate bleeding in a factor VIII null mice model. Using the proximal glycoprotein 1b␣ promoter to drive expression of a human factor VIII cDNA construct, transgenic lines were established. One line had detectable human factor VIII that colocalizes with von Willebrand factor in platelets. These animals had platelet factor VIII levels equivalent to 3% to 9% plasma levels, although there was no concurrent plasma human factor VIII detectable. When crossed onto a factor VIII null background, whole blood clotting time was partially corrected, equivalent to a 3% correction level. In a cuticular bleeding time study, these animals also had only a partial correction, but in an FeCl 3 carotid artery, thrombosis assay correction was equivalent to a 50% to 100% level. These studies show that factor VIII can be expressed and stored in platelet ␣-granules. Our studies also suggest that plateletreleased factor VIII is at least as potent as an equivalent plasma level and perhaps even more potent in an arterial thrombosis model. (Blood. 2003;102:4006-4013)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.