Previous studies have shown altered brain metabolism after cerebral hypoxia-ischemia, using magnetic resonance spectroscopy with echo times (TE) of 272 and 136 ms, based on peak-area or peak-height ratios. The present study examined the additional value of proton magnetic resonance spectroscopy with a short TE (31 ms) to predict a poor outcome in neonates with brain hypoxia-ischemia. Studies were performed in 21 full-term neonates with perinatal asphyxia in a 1.5 tesla magnetic field. Proton magnetic resonance spectroscopy was performed in a single volume of interest including the basal ganglia. TE of 272, 136 and 31 ms were used. After curve-fitting procedures, peak-areas as well as peak-height ratios of different brain metabolites were calculated, comparing patients with a poor versus a good outcome. Seven neonates out of 21 had a poor outcome. Neonates with a poor outcome showed a significantly lower N:-acetylaspartate/choline (NAA/Cho) and a significantly raised lactate/NAA (Lac/NAA) ratio using TE of 272 and 136 ms. Using a TE of 31 ms, no differences were found in glutamate/NAA (Glx/NAA), Glx/Cho, myo-inositol/NAA (mI/NAA), and mI/Cho ratios between neonates with a good and those with a poor outcome. Highest predictive values could be achieved for NAA/Cho with a TE of 136 ms. We conclude that low NAA/Cho and high Lac/NAA ratios predict a poor outcome in neonates with cerebral hypoxia-ischemia. TE of 272 and 136 ms have a better predictive value than a TE of 31 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.